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and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was

used to achieve consensus.

2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus
statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for
depression. Considerations related to training, roles/responsibilities of providers, and documentation are also

discussed.

TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of
TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting
methods, use in special populations, and accelerated protocols is encouraged.

This article provides an updated overview of topics relevant to the administration of TMS for depression and
summarizes expert, consensus opinion on the practice of TMS in the United States.

1. Introduction

Transcranial magnetic stimulation (TMS) is a treatment for major
depressive disorder (MDD) in adults that was cleared by the United
States Food and Drug Administration (FDA) in 2008. Since the approval
of the initial TMS device at that time, multiple TMS systems have
received 510 k clearances. The treatment involves applying repeated,
noninvasive, targeted stimulation to the prefrontal cortex of the brain
over several days. Various reviews, recommendation documents, and
meta-analyses have been published over the past 15 years summarizing
the literature on the use of TMS for depression, including a consensus
recommendations document from the National Network of Depression
Centers (NNDC) rTMS Task Group (now the Neuromodulation Task
Group) and American Psychiatric Association (APA) Council on
Research Task Force on Novel Biomarkers and Treatments in 2018
(McClintock et al., 2018a). TMS use continues to rapidly expand, with
new clinical indications and treatment protocols being studied that are
changing how TMS is administered and the associated standard of care.
For example, new forms of TMS have been pioneered, including the use
of intermittent theta burst stimulation (iTBS) to shorten the total stim-
ulation and treatment time. Other accelerated protocols attempt to push
the boundaries of total pulses delivered to the brain and time to treat-
ment response. The FDA has recently extended the label for a specific
TMS device and protocol down to age 15. The rapidly changing treat-
ment landscape prompted our group to write an updated consensus
document aimed at reviewing new literature on the use of TMS in
depressive disorders. In addition to reviewing this new literature, we
offer consensus statements on key topics surrounding the practice of
TMS for depressive disorders.

2. Methods
2.1. Participants and process for the consensus statements

The National Network of Depression Centers (NNDC) Neuro-
modulation Task Group convened a subgroup of 18 expert clinicians and
researchers on the use of TMS for depressive disorders. The credentials
for members of the task group are reviewed in Appendix 1. The experts
met virtually via video conference on a monthly basis between October
2022 and April 2024, and a workshop focused on this process was
convened as a pre-meeting event prior to the annual NNDC conference
in October 2023 in Houston, Texas. Each meeting consisted of a pre-
specified topic leader or leaders reviewing the evidence for a topic of
clinical interest identified by the task group, followed by discussion
amongst the group of experts related to practical aspects of TMS and
differing practices. A modified Delphi method (Trevelyan et al., 2015)
was used to achieve consensus on topics addressed at the monthly
meetings, including an iterative process of blinded voting followed by
providing anonymized feedback from each voter justifying their vote to
the rest of the group. This process was continued until majority
consensus was achieved. All members of the group then had the op-
portunity to provide additional edits to the drafted consensus statement.
The drafted consensus statement was then submitted for review by the
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executive committees of the International Federation of Clinical
Neurophysiology and the Clinical TMS Society for review and endorse-
ment by both organizations.

2.2. Evidence to support the consensus statements

The NNDC Neuromodulation Task Group collected evidence via
systematic literature review and expert opinion. The literature search
included a search of Medline/PubMed, Cochrane, PsycINFO, and
Embase between the dates of September 1, 2016 (the end date of the
prior review for the 2018 publication) and September 12, 2022. Refer-
ences of included studies were not systematically searched for additional
eligible studies, although additional articles identified by expert
recommendation were also included from before September 2016 and
up to October 1, 2024. Search terms included transcranial magnetic
stimulation and seven similar terms within its MeSH designation, as well
as depression, postpartum depression, major depressive disorder, treatment-
resistant depressive disorder, dysthymic disorder, premenstrual dysphoric
disorder, vascular depression, and 33 additional terms within their MeSH
designations including bipolar depression (see Appendix 2 for full list).
Title and abstract review were conducted by authors NTT, AP, and JRR.
Inclusion criteria were primary data articles, review articles, or meta-
analyses on mood disorders and TMS. Exclusion criteria were non-
English language articles, commentaries, duplicate articles, non-data
articles, articles with no mood outcomes or TMS, and preclinical
studies. In total, 4,238 abstracts were reviewed, identifying 2,396
unique articles meeting inclusion criteria. A PRISMA-like flow diagram
is shown in Fig. 1. Each topic leader reviewed a subset of these articles
relevant to the topic of interest based on a keyword search amongst the
article titles and abstracts (see details in Fig. 1 and Appendix 3). As this
number of articles was beyond the scope of a systematic review,
discretion for reference to relevant articles lay with the topic leader(s)
informed by input from the task group as a whole. Table 1 highlights the
primary considerations from the document for reference throughout.

3. Literature review and consensus statements
3.1. Efficacy of TMS in depression

3.1.1. Major depressive disorder

The acute antidepressant effects of left dorsolateral prefrontal cortex
(DLPFC) repetitive transcranial magnetic stimulation (rTMS) for major
depressive disorder (MDD) have been extensively studied and repro-
duced, as discussed in McClintock et al. (McClintock et al., 2018a). The
evidence includes three pivotal randomized controlled trials (RCTs)
(George et al., 2010b, Levkovitz et al., 2015, O’Reardon et al., 2007), a
large multisite non-inferiority study of intermittent theta burst stimu-
lation (iTBS) versus high frequency (10 Hz) rTMS (Blumberger et al.,
2018), and numerous meta-analyses (Dalhuisen et al., 2022, Kedzior
etal., 2015, Mutz et al., 2017, Mutz et al., 2018, Razza et al., 2021, Wei
etal., 2017). In contrast, one recent large-scale (n = 164) clinical trial in
the VA health system failed to demonstrate superiority of active TMS
compared to sham, due in part to high sham responder rates (Yesavage
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et al., 2018). Recent developments in the clinical application of TMS
have confirmed and solidified the evidence for antidepressant efficacy.
For example, one meta-analysis of RCTs that incorporated 65 rTMS
studies (n = 2,982 participants) demonstrated a large antidepressant
effect size (Hedge’s g 0.79, 95 % confidence interval 0.61 to 0.98) with
high frequency rTMS applied to the left DLPFC (Dalhuisen et al., 2022).
Analysis of response and remission rates in this meta-analysis similarly
revealed odds ratios favoring active treatment over sham (ratios of
2.38:1 and 2.45:1, respectively). One large, retrospective study (n =
5,010) of “real-world” patients receiving rTMS for depression reported
response rates of 58-83 % and remission rates of 28-62 % (Sackeim
et al., 2020) across both self-report and clinician-administered outcome
scales. Furthermore, two recent studies suggest rTMS be considered
earlier in antidepressant treatment algorithms, demonstrating rTMS
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may be more effective than medication in patients with treatment
resistance. In one study, rTMS augmentation was superior to switching
pharmacologic agents in patients with TRD who had failed 2 or more
medications (Papakostas et al., 2024). In the other, TRD patients ran-
domized to rTMS had greater reductions in depressive symptoms, spe-
cifically anhedonia and anxiety, compared to those randomized to an
evidence-based antidepressant medication switch or pharmacologic
augmentation (Dalhuisen et al., 2024).

Although acute clinical benefits of rTMS for major depression have
been well established, the durability of the antidepressant effect has
been less well characterized. One systematic review and meta-analysis of
18 studies on this topic (n = 247 to 732 depending on timepoint of in-
terest) suggested that sustained response rates at 3, 6, and 12 months
post-treatment were 66.5 %, 52.9 % and 46.3 %, respectively (Senova

Title & Abstract review

(n =4238)
S Excluded (n = 1842)
S Animal studies (n=119)
_g Commentary/editorial (n = 224)
= Duplicates (n = 423)
5 No mood outcomes (n=404)
° No TMS intervention (n=594)
Non-English (n=23)
Other non-data publication (e.g.,
press release) (n=55)
Included (n = 2396)
8 § Abstract mentions Other primary data
ﬁ S meta-analysis or RCT manuscripts
2& (n=1417) (n=979)
Efficacy section
(n=1417 abstracts available for review, 122 meta-analyses
reviewed)
Safety section
(n=293 abstracts available for review)
> Predictors section
9 (n=53 abstracts available for review)
o
o Special Populations section
5o (n=167 abstracts available for review)
§ § Coil Design section
2 ﬁ (n=37 abstracts available for review)
Q
a < Targeting section
(n=89 abstracts available for review)
Stimulation Protocols section
(n=263 abstracts available for review)
Treatment Optimization section
(n=154 abstracts available for review)
Barriers section
(n=4 abstracts available for review)

Fig. 1. Flow diagram of systematic article identification, screening, and inclusion for review. Systematic search was conducted for publications from September 1,
2016 to September 12, 2022. Additional articles from before September 1, 2016, or between September 12, 2022 and up to April 17, 2024 were added based on

expert knowledge and recommendations.
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Table 1

Literature Summary and Consensus Recommendations.

Topic

Summary & Recommendations

Efficacy of TMS in Depressive
Disorders

Safety and Pre-TMS Evaluation

Predictors of Antidepressant
Response

Use in Special Populations

Coil Design

e A robust evidence base supports the efficacy
of left DLPFC rTMS for MDD with a large
effect size, including evidence for efficacy in
treatment-resistant depression.
The available data for bipolar depression
demonstrate a smaller magnitude of
antidepressant effect. Some protocols raise
concern for an increased risk of induction of
manic symptoms.
rTMS has a modest effect in reducing anxiety
symptoms and depression associated with
Parkinson’s Disease. It has a strong
antidepressant effect in post-stroke depres-
sion.

There is insufficient evidence to provide
guidance on rTMS
for other mood disorders, suicidal ideation,
depression with psychotic features, and
depression secondary to TBI or SUD.
e r'TMS is generally well tolerated, with mild
side effects of scalp pain, tension-type head-
aches, dizziness/lightheadedness, fatigue,
and insomnia. Serious adverse effects,
including seizure, syncope, tinnitus, and
retinal detachment are rare. Treatment-
emergent mania is also rare.
A pre-TMS assessment should include a
thorough history and assessment of risk fac-
tors for seizure and other contraindications.
The motor threshold should be checked at
baseline and either weekly or any time there
is a change in the patient’s clinical status or
medications.

We recommend follow-up at least every
other week during
a treatment course to assess for response and
monitor for side effects.
No demographic factors consistently predict
response.
r'TMS has a greater antidepressant response
when combined with antidepressant
medication.
Benzodiazepine use is associated with worse
clinical outcomes while psychostimulant use
is associated with improved clinical
outcomes in retrospective studies. There is
insufficient evidence to guide prescribing.
Data on the influence of comorbidities,
degree of treatment resistance, and
depressive symptomatology on treatment
response are conflicting.
We continue to recommend that patients
with depression with psychotic features be
considered for ECT.
rTMS appears to be safe in adolescent,
peripartum, and geriatric populations, but
more studies are needed.
Trials generally support the safety of rTMS in
these populations, though the evidence base
on efficacy varies by condition.
1rTMS is FDA-cleared as adjunctive therapy
for adolescents ages 15 and up, but not for
use in children or younger adolescents at the
time of this writing.
More research is needed to further evaluate
the efficacy of rTMS in these special
populations, as there are distinct clinical
advantages of this treatment modality in
these groups.
Figure-of-8 (F8) coils induce more focal and
superficial electrical fields.
H coils induce electrical fields that are
thought to penetrate more deeply and
broadly (less focal).
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Topic

Summary & Recommendations

Targeting Methods

Stimulation Protocols

Treatment Optimization

Training, Privileging, and
Treatment Roles and
Responsibilities

F8 and H coils are both FDA-cleared and
demonstrate significant evidence of efficacy
and safety in treating depression.

We recommend using the 5.5 cm method or
Beam F3 method for scalp-based targeting of
the DLPFC for daily rTMS.

The incorporation of structural and
functional imaging in rTMS targeting is
useful for treatment individualization. The
extent of its potential advantage in
effectiveness is still an active area of
investigation.

Traditional and “dash/rapid™ high-frequency
1TMS protocols are FDA-cleared and broadly
recommended.

Intermittent theta burst stimulation is an
FDA-cleared protocol of short duration and is
non-inferior to standard high-frequency
protocols. We equally recommend iTBS and
standard high-frequency rTMS as initial an-
tidepressant protocols.

Low-frequency only protocols have a weaker
evidence basis and are not FDA-cleared for
depression.

Bilateral rTMS does not appear to be superior
to unilateral rTMS.

Various accelerated protocols are being
investigated, and there is some evidence that
increased dose (either by number of pulses or
number of sessions) is associated with
greater antidepressant effect.

A novel and FDA-cleared highly accelerated
protocol that also incorporates individual-
ized targeting based on functional connec-
tivity has shown high remission rates in an
outpatient setting. Larger trials in other set-
tings are underway, and this on-brand pro-
tocol only recently became commercially
available in April 2024.

Various other protocols, including
synchronized TMS, are

being investigated but are not recommended
in routine clinical use at this time.

Magnetic seizure therapy (MST) utilizes TMS
to induce a seizure to treat depression. Early
data for this modality are promising and
report reduced cognitive side effects
compared to ECT. Larger trials are
underway.

We generally recommend that patients
receive the full treatment course of 30-36
sessions. There is conflicting evidence about
prediction of response after a portion of
sessions.

Combining psychotherapy with rTMS may
have additional benefits, though further
research is needed before this is broadly
recommended.

Maintenance TMS is promising although the
frequency of

maintenance treatments needed to sustain
benefit is unclear.

No medication augmentation strategies have
enough

evidence to be broadly applied, although use
of stimulants and glutamate receptor
modulators is promising.

TMS for depression can be prescribed by
clinicians with appropriate training and
licensing, including knowledge of mood
disorders and safe TMS use, as well as
demonstration of technical skill with the
device

TMS technicians should be trained to operate
and appropriately target the TMS device, in

(continued on next page)
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Table 1 (continued)

Topic Summary & Recommendations

addition to receiving training on monitoring
for and identifying adverse events from TMS
We recommend an emphasis be placed on
TMS teaching and exposure in residency
training programs, as well as ongoing TMS
advocacy by physicians and physicians’
groups, to address key barriers to the use of
TMS including lack of access to experienced
providers and lack of understanding of the
procedure

A pre-treatment assessment note should
document the indication for TMS, potential
risks and benefits, as well as confirmation of
consent to treatment

Procedure notes should document treatment
protocols,

clinical progression, and treatment-related
side effects

We recommend the use of rating scales to
establish baseline symptom severity and
monitor clinical response

At minimum, a mood rating scale should be
obtained pre- and post-treatment

Barriers to Treatment

Documentation

et al., 2019). However, this analysis included 11 studies in which par-
ticipants were provided maintenance rTMS, which is not widely avail-
able in the United States. Subgroup analyses suggested maintenance
treatment and female sex are predictive of increased durability of
response. For example, 6-month sustained response rates were 61.1 % in
studies with a maintenance protocol compared to 38.5 % in studies
without one. Further study on optimal maintenance protocols is un-
derway and is discussed in Section 3.8. Treatment Optimization. In addi-
tion to further supporting acute antidepressant efficacy of rTMS for
major depressive disorder and exploring durability, recent research ef-
forts have also focused on generating a more nuanced understanding of
optimal rTMS parameters and “dose;” special mood disorder populations
in which rTMS has shown promising therapeutic effect; and comparison
of different treatment coils, stimulus protocols, or augmenting strategies
for rTMS. All these topics are discussed in detail in other sections.

3.1.2. Bipolar depression

Since the original National Network of Depression Centers and
American Psychiatric Association consensus statement was published,
three meta-analyses have been published evaluating the effects of rTMS
on bipolar disorder (Nguyen et al., 2021, Noda and Kito, 2020, Tee and
Au, 2020). The largest of these contained 11 studies (n = 345 adult
participants) (Tee and Au, 2020). In that report, the authors reviewed
studies evaluating the effects of right and left prefrontal rTMS in
depressive, mixed, and manic episodes of bipolar disorder. They iden-
tified a small but significant improvement in depressive symptoms with
rTMS (effect size 0.31), with a number needed to treat (NNT) of 10 for
remission as the outcome. Only one case of treatment-emergent mania
was reported across 135 participants with bipolar depression treated
with concomitant mood stabilizers or antipsychotics; this occurred in
the context of left-sided high-frequency stimulation. Other studies have
demonstrated mixed and inconclusive findings related to rTMS for bi-
polar depression, including concern for higher rates of treatment-
emergent mania with iTBS and unclear efficacy (Konstantinou et al.,
2022, McGirr et al., 2021b). A more detailed discussion of risk for mania
and hypomania can be found in the Safety of rTMS section (3.2.1.).
Furthermore, data for treating manic symptoms with rTMS is even less
promising and less well-studied. Nonetheless, rTMS for bipolar disorder
remains an area of active investigation and clinical promise; for
example, the FDA has granted breakthrough status to one TMS device
company for treating bipolar depression (Neuronetics, 2020).
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3.1.3. Other depressive disorders and comorbid conditions

Other work has focused on depression with various comorbidities.
The FDA cleared the H1 coil for anxious symptoms comorbid with
depression in 2021 (Pell et al., 2022) based on retrospective data from
anxiety symptoms measured during three RCTs (n = 442) that found a
modest effect size favoring active relative to sham treatment (g = 0.34,
sustained at 16 weeks). FDA clearance for this indication followed for
some figure-8 coil manufacturers as well (Hutton, 2021, Hutton et al.,
2023b). Another focus of research over the past six years has been
depressive symptoms comorbid with Parkinson’s disease (Chen J. et al.,
2021, Hai-Jiao et al., 2020, Li et al., 2020b, Qin et al., 2018, Zhang et al.,
2022). Several meta-analyses found moderate effect sizes (range 0.33 to
0.80), demonstrating antidepressant effect primarily with high fre-
quency left DLPFC rTMS (Chen J. et al., 2021, Hai-Jiao et al., 2020,
Zhang et al., 2022).

One of the conditions with accumulating evidence for efficacy is
post-stroke depression, with seven meta-analyses of large sample size
(five with > 1,000 participants) published within the past six years
(Deng et al., 2017, Li et al., 2017, Liang et al., 2022, Liu et al., 2019,
Shao et al., 2021, Shen et al., 2017, Shen et al., 2022). These datasets
have all suggested a strong antidepressant effect of high frequency left
DLPFC rTMS, and in several cases low frequency right DLPFC rTMS, with
homogeneously large effect sizes, often surpassing 1.0 (standardized
mean differences ranging from 1.01 to 4.92).

Use of rTMS for suicidality has shown some promise in meta-ana-
lyses, with one meta-analysis of 8 randomized, controlled trials (n = 566
participants) calculating an effect size of 0.415 for treating suicidal
ideation with rTMS in patients with depression (Cui et al., 2021). Other
meta-analyses have found similar effect sizes (Chen et al., 2022),
although interpretation is complicated by inclusion of uncontrolled
data, multiple stimulation modalities, or multiple mental disorders, and
have demonstrated high heterogeneity in outcomes reported (Chen
et al., 2022, Cui et al., 2021, Mehta et al., 2022). Accelerated rTMS
protocols may have robust, rapid-acting anti-suicide effects, although
large, randomized, controlled trials are needed to confirm early findings
(Li et al., 2024).

The role of rTMS for other mood disorders (e.g., persistent depressive
disorder) remains under investigation. Other mood conditions for which
patients may present to an interventional psychiatrist, such as post-
traumatic stress disorder or anxiety-associated dysphoria, depression
secondary to traumatic brain injury, or depression in the context of
substance use disorders, remain under investigation. Although some
studies have shown promising efficacy, effectiveness, and safety (Cirillo
etal., 2019, Cox et al., 2022, McGirr et al., 2021a, Oberman et al., 2020,
Parikh et al., 2022, Pellegrini et al., 2022, Rao et al., 2019, Siddiqi et al.,
2019, Tang et al., 2022, Thatikonda et al., 2022, Tsai et al., 2021, Wu
et al., 2022, Yan et al., 2017), the evidence remains mixed and limited,
with no definitive conclusions or consensus recommendations at this
juncture.

Notably, TMS is FDA-cleared for other psychiatric disorders, such as
obsessive—compulsive disorder (OCD) and tobacco use disorder (smok-
ing cessation). Often TMS protocols for different clinical indications use
distinct brain targets and treatment parameters. However, some evi-
dence suggests that certain medial prefrontal cortex targets and stimu-
lation protocols may improve both depression and anxiety symptoms
concomitantly (Li et al., 2020a; Siddiqi et al., 2020; Taylor et al., 2024;
Trapp et al., 2023b), paving the way for future studies examining
transdiagnostic effects of specific treatment targets and protocols.
Indeed, one deep TMS coil (H7) is FDA-cleared for both MDD and OCD
and warrants further investigation. Additional discussion of other psy-
chiatric indications is beyond the scope of this consensus statement.
Studies investigating the efficacy of combining antidepressive TMS
protocols with those used for other indications is limited and worthy of
future pursuit.
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3.2. Safety and Pre-TMS evaluation

3.2.1. Safety of rTMS

Repetitive transcranial magnetic stimulation (rTMS) for the treat-
ment of MDD has a generally favorable safety and tolerability profile.
The most common side effects are significant scalp or stimulation site
pain/discomfort (incidence 39 %), tension-type headaches (28-65 %),
nausea (7-11 %), dizziness or lightheadedness (4-9 %), fatigue (7-8 %),
and insomnia (5-7 %). Less common side effects (<5%) include anxiety,
irritability, back or neck pain, and precipitation of migraine headache.
All these side effects are acute and time-limited effects of treatment.
Very rare side effects (incidence likely well below 0.1 %, difficult to
quantify, and with unclear causal relationship to TMS) include syncope,
posterior vitreous detachment, retinal tear, and tinnitus (Blumberger
et al., 2018, Kung et al., 2011, Loo et al., 2008, Marafon et al., 2020).

Among the most concerning known TMS-induced side effects is that
of a seizure. Seizures reported to date with rTMS have been self-limited,
occurred at the time of stimulation, and have not resulted in a seizure
disorder. Most prior literature agrees that the seizure incidence with
standard clinical rTMS protocols is less than 0.1 %, with some studies
suggesting rates as low as 1 in 33,000 treatments (0.003 %) (Rossi et al.,
2009). Some evidence suggests that different TMS coil designs may have
different risk profiles for side effects, including seizure. For example, the
seizure risk of the H1 TMS coil, which is delivered at a higher stimula-
tion frequency and is thought to stimulate a deeper and greater volume
of brain tissue, appears to be roughly 1 in 2,000 treatments, (incidence
0.043 % to 0.087 % depending on the study) (Lerner et al., 2019, Ten-
dler et al., 2018). This incidence is generally higher than reports for
figure-8 coil designs (1 in 12,500 treatments, or 0.008 %) (Lerner et al.,
2019, Lisanby et al., 2003, Taylor et al., 2021). On this point, it is
important to note that motor threshold (MT) checks recommended by
manufacturers of each coil design vary (e.g., weekly MT checks with the
H1 coil and a single MT check with some figure-8 coils), and there are
few randomized, controlled trials that have evaluated differences be-
tween coil designs and their unique FDA-cleared protocols from which
to draw firm safety comparisons. The largest randomized, controlled
trial known to the authors that compared a figure-8 TMS coil to an H1
coil (n = 143) did not report any seizures in either treatment group
(Filipcic et al., 2018). Seizure incidence is so infrequent with TMS that
vasovagal syncope, which has also occurred with TMS especially early in
a treatment course, should be high on the differential for any loss of
consciousness episode that may occur.

Despite the theoretical increased risk of seizure in patients taking
medications that can lower the seizure threshold, the practical impact on
seizure risk is very low for patients taking prescribed medications in
standard dose ranges (Dobek et al., 2015) and who lack other seizure
risk factors. Overall, the incidence of seizure with rTMS as applied for
the treatment of MDD is exceedingly low, with rates lower than those
reported for a seizure threshold-lowering medication such as bupropion
(incidence 0.35-0.44 %) (Davidson, 1989). Indeed, the only TMS-
related seizure reported in a multisite trial occurred in a patient after
heavy alcohol use the night prior to treatment (Levkovitz et al., 2015,
Taylor et al.,, 2021). Even in patients with diagnosed epilepsy, the
seizure risk is < 3 % (Stultz et al., 2020). Our understanding of TMS-
induced seizure risk factors continues to grow, and adjustments to
stimulation parameters and targeting may further reduce seizure risk in
future clinical use and research trials.

As with many antidepressant treatments, induction of hypomanic or
manic symptoms is a potential concern with rTMS, typically in patients
with a history of bipolar disorder (Xia et al., 2008). Associated symp-
toms have included psychomotor activation, pressured speech, irrita-
bility, racing thoughts, flight of ideas, grandiosity, decreased need for
sleep/insomnia, euphoria, and psychosis (Dolberg et al., 2001, Maha-
patra et al., 2017, Rachid, 2017). Studies vary as to the incidence of this
side effect profile, but it appears to be low (0.84 % per year), similar to
the development of manic symptoms with sham TMS (0.73 %) and
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comparable to the reported baseline risk in this population. A more
recent randomized, controlled trial of intermittent theta burst (iTBS)
showed that two of 37 participants with bipolar depression developed
treatment-emergent hypomanic symptoms (one blinded active, one
open-label active) and was terminated early based on the results of a
futility analysis, suggesting the need for further investigation of the
association between iTBS, antidepressant response, and hypomanic/
manic symptom propagation in bipolar disorder (McGirr et al., 2021b).

Emergent suicidal ideation with rTMS, when present, is thought to be
a consequence of lack of rTMS efficacy as opposed to a direct side effect
of the treatment. Indeed, there appears to be some evidence for anti-
suicidal effects of rTMS as mentioned above (Section 3.1.3. Efficacy:
Other Depressive Disorders and Comorbid Conditions).

3.2.2. Pre-TMS evaluation

Much of the initial evaluation for a TMS candidate is focused on
safety. Based on case reports, TMS-induced seizures are typically pro-
voked by independent risk factors, such as sleep deprivation, substance
abuse or withdrawal, or use of TMS stimulation parameters that are
outside standard dosing ranges.

A pre-TMS evaluation needs to include a comprehensive review of
the patient’s health status (including historical and current medical,
surgical, neurologic, and psychiatric conditions) and a comprehensive
review of current medications and prior medications trials, including
treatment dose, duration, and outcome (safety, tolerability, efficacy).
Although TMS was initially FDA-cleared for MDD in patients who had
failed one antidepressant medication trial, it is now approved for adults
who have not responded to prior antidepressant medications more
generally. Detailed documentation of prior treatment trials is crucial, as
insurance companies often require demonstration of failed medication
or therapy trials prior to TMS approval in many cases.

As reviewed in detail in the prior NNDC-APA consensus publication,
the pre-TMS evaluation should focus on identifying risk factors associ-
ated with seizure induction including: 1) personal/family history of
epilepsy/seizure, 2) past stroke or head injury with neurologic sequelae,
3) concurrent use of medications/substances that alter seizure threshold
(e.g., anticonvulsants, amphetamines, or benzodiazepines), and 4) the
presence of medical and/or neurologic conditions that might be asso-
ciated with a lower seizure threshold (e.g., sleep deprivation, increased
intracranial pressure, electrolyte imbalances, and substance use or
withdrawal). An absolute contraindication to rTMS is any ferromagnetic
material within 10 cm of the coil (Rossi et al., 2021), which is based on
updated safety data after device companies initially recommended a
minimum distance of 30 cm. The evidence for the safety of rTMS in
adults with implanted devices such as deep brain stimulators, vagus
nerve stimulators, cochlear implants, intracranial stents, hypoglossal
nerve stimulators, or intracranial electrodes has not been definitively
assessed, although there is evidence that stimulation close to program-
mable devices (within 10 cm) can cause them temporary (2-10 cm
distance) or permanent (<2 cm distance) malfunction (Rossi et al.,
2021). Much implantable hardware is now non-ferromagnetic (e.g., ti-
tanium) and MRI-compatible, but this should be confirmed for each
individual patient. The safety of rTMS in adolescents, pregnant women,
and those with neurologic disorders is discussed in further detail in
Section 3.4. Use in Special Populations. A more in-depth review of the
safety of TMS in special populations and in populations beyond mood
disorders is discussed in detail elsewhere (Lefaucheur et al., 2020, Rossi
et al., 2021, Rossi et al., 2009).

Other clinical features, such as heavy alcohol or recreational drug
use during treatment or a diagnosis of epilepsy, may be better consid-
ered as relative contraindications, and the decision to pursue rTMS re-
quires a risk and benefit assessment on the part of the clinical team, as
well as a discussion with the patient to fully inform them of their
personalized risk-to-benefit ratio to the extent possible. Substances can
have unpredictable and variable effects on cortical excitability, and
adverse events associated with concurrent substance use during an rTMS
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course have been described (DePamphilis et al., 2024, Stultz et al.,
2020). However, this discussion can be complicated by limited data
available on the antidepressant effectiveness and safety of TMS in pa-
tient populations with active substance use, and TMS is actively being
studied as a treatment for substance use disorders in research contexts.

Although previous recommendations proposed a comprehensive
physical exam be performed on all patients prior to the start of rTMS, our
updated consensus states that a focused physical exam is usually suffi-
cient, as guided by patient demographics, identified risk factors, and
medical history. This may be as extensive as a full physical and neuro-
logic exam or as minimal as a focused neurologic exam based on
neurological history and clinical suspicion, as is common for many
psychiatric evaluations. The ultimate responsibility for the safety of the
TMS procedure lies with the prescribing clinician, and thus the nature
and extent of the physical exam is at their professional discretion. In
certain circumstances, the prescribing clinician may request consulta-
tion with or documentation from another healthcare provider to address
a suspected or diagnosed condition of concern (such as a neurologic
evaluation in a patient with history of prior stroke or multiple sclerosis).

3.2.3. Improving treatment tolerability and safety

During a treatment course, methods to enhance tolerability and
safety may be applied. Considerations to improve tolerability include a
“ramp-up” of stimulation, where the clinician may start at a lower
stimulus and gradually increase the dose during the first several stim-
ulation trains or days to gradually acclimate the patient to the stimu-
lation. An extended “ramp-up” may theoretically risk underdosing a
patient, however. Patients who develop headaches with treatment may
benefit from use of over-the-counter analgesics (such as acetaminophen,
ibuprofen, or topical lidocaine cream) before or immediately following
treatment to minimize future headaches. For hearing safety, patients
and providers in the treatment room should wear ear protection (e.g.,
ear plugs) that provides at least 30 dB of noise reduction to minimize the
risk of tinnitus or other auditory effects (Costello, 2011, Koponen et al.,
2020).

3.2.4. Monitoring during treatment course

To minimize seizure risk, adequate training on identifying motor
thresholds is crucial to ensuring that the stimulation dose administered
is the intended dose, which is typically 120 % of the motor threshold for
standard high frequency rTMS courses for depression. Although baseline
testing is imperative, the frequency of repeat motor threshold testing
during a treatment course is less standardized. Data suggest that the
motor threshold varies throughout a typical treatment course (42 % of
sessions had > 5 % difference from baseline motor threshold in one
study) (Cotovio et al., 2021), resulting in higher or lower intensity than
initially planned. Although this variance poses theoretical concerns for
under-dosing (ineffectiveness of treatment) or over-dosing (higher
seizure risk), systematic evidence linking this variance to differences in
safety or clinical benefit is limited. Thus, our consensus recommends
checking the motor threshold at baseline and then consider weekly
checks or re-checking on days when there may have been a change that
is thought to influence cortical excitability. For example, this recheck
may be especially important when patients have a change in medica-
tions that may alter the seizure threshold, experience a change in sleep
pattern from baseline or have a comorbid sleep disorder, or use recre-
ational substances such as alcohol or caffeine around the time of
treatment.

If prefrontal stimulation results in any motor activity in the contra-
lateral hand or face, this movement could represent stimulation exten-
sion into motor regions of the cortex and that potentially place the
patient at a higher risk for developing seizure activity. Especially con-
cerning features of motor activity during treatment include unexpected,
involuntary movement of large magnitude and movement that persists,
even briefly, beyond the last stimulation pulse in each pulse-train.
Providers observing such movements should pause treatment and
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notify the supervising clinician to confirm the coil targeting and
consider rechecking the dose and the motor threshold.

Regular visits with the prescribing or supervising clinician during the
rTMS treatment course are important to monitor for any emergent hy-
pomanic/manic symptoms, suicidal ideation, or other side effects, as
well as to assess for changes in clinical status and provide psycho-
education. Our consensus recommends that follow-up occurs approxi-
mately every other week, as this offers the opportunity to make
recommendations on medication adjustment or treatment optimization
as described in Section 3.8. Treatment Optimization. In patients consid-
ered to be especially high-risk or those with significant comorbidities or
side effects, more frequent follow-up visits may be indicated. In addition
to clinician visits, self-report rating scales should be administered to
monitor the trajectory of clinical outcome and offer additional oppor-
tunities to detect non-response or worsening of status early. These self-
report scales can be self-administered or administered by trained tech-
nicians. When scales or trained technicians identify concerning features
of a patient presentation, these concerns should be brought to the
attention of the clinician. More details regarding documentation of such
features are included in Section 3.12. Documentation.

3.2.5. Long-term safety effects

High frequency TMS has been cleared by the U.S. FDA since 2008,
and more than 20 million treatments with the figure-8 (F8) coil have
been delivered to date without any identified pattern of long-term side
effects (Carpenter and Philip, 2020). The H1 coil (FDA cleared in 2013)
has similarly been accumulating a record of safe and effective clinical
use. However, newer forms of TMS have become commonplace since the
publication of the prior NNDC-APA guidance, namely, intermittent theta
burst stimulation (FDA cleared in 2018), right prefrontal low frequency
rTMS (not FDA cleared), and one form of accelerated stimulation (FDA
cleared in 2022). These treatments have demonstrated neuroplastic
changes in the brain that appear to further enhance the therapeutic ef-
fects of rTMS. Although no acute adverse effects on cognition or
neurologic status have been detected (Blumberger et al., 2019, Levko-
vitz et al., 2015, Li et al., 2014, Sonmez et al., 2019), the long-term
safety of delivering TMS treatment repeatedly over extended periods
of time remains largely unknown.

3.3. Predictors of antidepressant response

In the 2018 NNDC and APA consensus article, it was suggested that
shorter duration of illness, younger age, and less treatment resistance
were associated with positive antidepressant treatment outcome of
rTMS (McClintock et al., 2018a). Numerous articles have since been
published regarding the antidepressant efficacy of rTMS, and although
very few studies were designed with the main purpose of assessing
predictors of antidepressant response, additional data from these studies
are helpful to further explore potential predictors of treatment response.
We limited the scope of this section to variables that can be obtained by
clinical interview so that they can have immediate relevance to broad
clinical settings. These predictors are summarized in Table 2. Other
factors that could predict treatment response, such as stimulation pro-
tocols or parameters and neurophysiological variables, are discussed
elsewhere (Sections 3.6. Targeting Methods and 3.7. Stimulation Protocols).
A full review of neurophysiological and neuroimaging biomarkers of
treatment response is beyond the scope of this manuscript and reviewed
elsewhere (Jin et al., 2024).

3.3.1. Demographic factors

Regarding patient demographic factors, age was the most frequently
reported predictor of response. Younger age has been correlated with
better outcome in rTMS (McClintock et al., 2018a), and though rela-
tively newer studies confirm previous findings (Qiao et al., 2020, Ros-
tami et al., 2017, Sigrist et al., 2022), others did not (Conelea et al.,
2017, Cotovio et al., 2022, Feffer et al., 2017), or even found the



N.T. Trapp et al.

Table 2
Predictors of response to rTMS in patients with major depressive disorder.

Positive Predictors Negative No Effect Mixed Findings
Predictors
Demographic
- Female” - Age*
Medications
- Concomitant use - Benzodiazepine - Mood - Antipsychotic
of: stabilizer (in
o Antidepressant unipolar
depression)
o Psychostimulant
o Non-lithium mood
stabilizer (in
bipolar
depression)
o D-cycloserine
Comorbid conditions
- OCcD” - Chronic pain
- Borderline - PTSD
personality
disorder
- Autism
spectrum
disorder
- Anxiety
disorders
Disease characteristic & treatment history
- Longer duration - History of ECT
of illness - Baseline
severity**
- Subtypes of
depression
- Bipolar
depression
- Degree of
treatment

resistance

# At least one meta-analysis supports this finding.

" One meta-analysis reported younger age was associated with better outcome.

" One meta-analysis reported lower baseline severity was associated with
better outcome.

opposite, that is, a correlation between older age and positive outcome
(Desbeaumes Jodoin et al., 2019, Kaster et al., 2018, Sackeim et al.,
2020, Trevizol et al., 2020). Female sex has been consistently correlated
with positive outcome (Clarke et al., 2019, Cotovio et al., 2022, Senova
et al., 2019).

3.3.2. Concomitant medication use

Three meta-analyses suggest that rTMS has greater antidepressant
benefit when used as an adjunctive treatment to psychotropic medica-
tions (Hung et al., 2020, Sehatzadeh et al., 2019, Zaidi et al., 2024).
Zaidi et al. specifically identified that concurrent SSRI use was associ-
ated with better outcomes when combined with rTMS. While
benzodiazepine-class medications have been associated with worse
clinical outcome (Deppe et al., 2021, Hunter et al., 2019), psychosti-
mulants have been associated with positive outcome (Hunter et al.,
2019, Wilke et al., 2022). Data on concomitant antipsychotic use is
mixed (Hebel et al., 2020, Schulze et al., 2017), while mood stabilizers
appear to have no influence on outcome (Hebel et al., 2021). In patients
with bipolar disorder, however, use of non-lithium mood stabilizer
medications was associated with better outcome (Gama-Chonlon et al.,
2022). Although early evidence suggested that medications that
modulate synaptic plasticity such as D-cycloserine may enhance clinical
response of rTMS, replication studies are needed (Cole J. et al., 2022).
The varying, and sometimes opposing, effects of the same medication on
different areas of the brain, as well as the effects of different medication
types and doses on clinical outcomes, warrant further investigation (Li
et al., 2010).
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3.3.3. Comorbid conditions

Several studies have investigated the efficacy of rTMS for the treat-
ment of depression in the presence of comorbid conditions. In patients
diagnosed with comorbid chronic pain, the evidence was conflicting on
whether higher baseline pain predicted better (Phillips et al., 2018) or
worse (Corlier et al., 2023) outcome. Findings were also mixed
regarding depression comorbid with PTSD (Hernandez et al., 2020,
Madore et al., 2022, Wilkes et al., 2020, Yesavage et al., 2018). Co-
morbid OCD (Thatikonda et al., 2023) and borderline personality dis-
order (Ward et al., 2021) have been found to be unrelated to treatment
outcome. Finally, a systematic literature review found that rTMS was
useful in treating depression in the presence of autism spectrum disorder
and anxiety disorders (Thompson, 2020).

3.3.4. Treatment resistance

A higher degree of treatment resistance was previously reported to
be associated with worse outcome (Lisanby et al., 2009), though there is
inconsistency in relatively newer research (Clarke et al., 2019, Feffer
et al., 2017, Fitzgerald P. B. et al., 2020, Kaster et al., 2018, Schulze
et al., 2017, van Eijndhoven et al., 2020, Voigt et al., 2019). One study
found that history of electroconvulsive therapy (ECT) was associated
with worse outcome regardless of ECT treatment outcome (Poleszczyk
et al., 2018), while others found no correlation (Clarke et al., 2019, Yuan
et al., 2020).

3.3.5. Depressive symptomatology

Regarding depression symptom severity, some studies found higher
severity correlated with worse outcome (Carpenter et al., 2018, Cotovio
etal., 2022, Donse et al., 2018, Feffer et al., 2017, Gellersen and Kedzior,
2018, Kaster et al., 2018), while others suggested that it was either
correlated with better outcome (Philip et al., 2019b, Sigrist et al., 2022)
or found no correlation (May and Pridmore, 2019, Mirman et al., 2022,
Schulze et al., 2017). Similarly, different depressive subtypes or char-
acteristics, such as depression with anxiety (Clarke et al., 2019, Fitz-
gerald P. B. et al., 2020, May and Pridmore, 2019, Pell et al., 2022,
Philip et al., 2019b, Yuan et al., 2020) or anhedonia (Fukuda et al.,
2021, Rostami et al., 2017, Spano et al., 2019) have no reliable pre-
dictive value, although some studies have identified improvement pre-
dominantly in these subscales of depression symptomatology compared
to pharmacologic agents (Dalhuisen et al., 2024). Longer depressive
illness duration was consistently associated with worse outcome
(Fitzgerald P. B. et al., 2020, Lacroix et al., 2021, Poleszczyk et al., 2018,
Qiao et al., 2020). Studies suggest that the presence of psychotic features
also portends lower odds of treatment response, although this has rarely
been systematically studied (Konstantinou et al., 2021, Rachid and
Bertschy, 2006).

3.3.6. Conclusions and considerations

Overall, the mixed and varying levels of evidence presented above
highlights the continued challenges in finding conclusive predictors of
antidepressant treatment response to rTMS, especially since most find-
ings were derived from retrospective chart review or secondary analysis
of RCTs. Available evidence suggests that it may be prudent to consider
rTMS earlier in the treatment algorithm for treatment-resistant depres-
sion, given the consistent correlation between length of illness duration
and poorer outcome, as well as evidence suggesting rTMS may be su-
perior to some pharmacologic strategies for TRD (Dalhuisen et al., 2024,
Papakostas et al., 2024). However, as rTMS is a safe and well-tolerated
treatment, patients with severe, chronic, and refractory depression
should not be precluded from receiving rTMS. For patients who are
already taking psychotropic medications, it is reasonable to use rTMS as
an adjunct to such medications. Although concurrent use of benzodi-
azepines was found to be correlated with worse outcome, it is unclear if
the correlation is due to the medication itself or other confounding
factors. Clinicians should consider discussion of minimizing benzodi-
azepine use when consenting patients for rTMS treatment or early in a
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treatment course if a patient is not showing signs of improvement, as
lack of early relief portends a less favorable prognosis (Feffer et al.,
2018, Spitz et al., 2022a).The current level of evidence is insufficient to
broadly recommend addition of medications or switching to a different
medication to improve outcomes. Finally, there has been little progress
in assessing outcomes of rTMS for depression with psychotic features.
We continue to recommend that such patients instead be considered for
ECT due to higher response rates from the available data (Grunhaus
et al., 2000). Further investigation of the predictors of treatment
response of rTMS and of the moderating effects of medications and
depression subtypes on rTMS efficacy will be critical in order to better
advise patients and enhance their outcomes.

3.4. Use in special populations

Research on the safety and clinical efficacy of rTMS has been largely
limited to adults, and clinical use of rTMS often excludes protected
populations such as adolescents and pregnant patients. Despite high
prevalence rates and limited evidence-based therapeutic options for TR-
MDD, the data supporting the efficacy of rTMS in adolescents or older
individuals with TR-MDD or those with perinatal depression are limited.
In addition, at the time of the prior consensus recommendations paper,
experts concluded that there was insufficient evidence to support
routine clinical rTMS use in these special populations (McClintock et al.,
2018a).

One potential reason for the dearth of studies in these populations is
their protected status. Federal Regulation 45 CFR 46 Subparts B (preg-
nant persons) and D (children) declare these populations as protected
and require attention to additional regulatory requirements to safeguard
the conduct of research with these individuals. Minors and older in-
dividuals with limited decision making are considered vulnerable clas-
ses that require additional consideration.

Evidence for and unique considerations associated with rTMS as an
antidepressant in adolescents, older individuals, and pregnant or post-
partum individuals thus represents an important topic for discussion.
Although rTMS has been safely and effectively applied in other unique
populations, such as those with post-stroke depression or depression in
the context of a neurodegenerative condition such as Parkinson’s dis-
ease, this data is reviewed in detail elsewhere and is beyond the scope of
this paper (Lefaucheur et al., 2020, Rossi et al., 2021).

3.4.1. Adolescent depression

Despite the burden associated with depressive illness in these pop-
ulations, there is a limited body of literature for rTMS in adolescent,
older adult, or peripartum depression. In adolescent populations, the
rTMS literature is composed of 16 unique datasets (N=~400 in-
dividuals) described in a recent systematic review (Majumder et al.,
2021).

There is a wide reported range of response and remission rates in
adolescents (Majumder et al., 2021). Youth also have known higher
placebo response rates in depression treatment trials compared to
adults, making efficacy difficult to quantify accurately in this age group.
For example, the largest double-blind, randomized, sham-controlled
trial of left prefrontal rTMS for TR-MDD in adolescents (n 103)
showed similar antidepressant effects in both the active and sham
groups after 30 rTMS treatments (29 % remission in both groups), with a
safety and tolerability profile similar to adults (Croarkin et al., 2021).
Notably, this trial showed no differences in suicidality between the
active and sham groups as measured by the Columbia Suicide Severity
Rating Scale, with one case of emergent suicidal ideation in each
treatment arm after starting treatment and one suicide attempt in the
active treatment arm determined to be “definitely not related to the
study device.” A review of 6 rTMS studies in adolescents (n = 165)
identified only one participant who withdrew due to worsening suicidal
ideation (Qiu et al., 2023).

Based on unpublished real-world data collected by one of the TMS
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manufacturers and clinical data available in the published literature,
TMS was FDA-cleared as a first-line add-on treatment for adolescent
depression in ages 15 and up as of March 2024 [510(k) premarket
notification K231926]. Unlike pharmacologic antidepressants in this
age group, rTMS does not carry a black box warning for increased sui-
cidal thoughts or behaviors.

3.4.2. Geriatric depression

In older adult populations, there is an increased potential for adverse
medication interactions, making rTMS a well-tolerated alternative to
consider (Knochel et al., 2015, Tedeschini et al., 2011). Only 7 RCTs (N
= 148) and 8 open-label (N = 407) rTMS trials, including one RCT and
one open label study of H1 coil “deep TMS” (Kaster et al., 2018, Roth
et al., 2024), have focused on older adults with depression to date; these
have also been recently evaluated in a systematic review (Cappon et al.,
2022).

Results from these studies with older adults have found variable ef-
ficacy that ranges from 6.7 % to 54.3 % for response and 8.2 % to 40.0 %
for remission (Cappon et al., 2022), although more recent large-scale
clinical trials and meta-analyses suggest meaningful response and
remission rates (Blumberger et al., 2022, Roth et al., 2024, Zhang et al.,
2023). TMS is considered FDA-cleared for geriatric depression, up to age
86 for one device as of May 2024 [510(k) premarket notification
K222196]. The evidence for rTMS in this population should be inter-
preted in light of the sample and stimulation characteristics. Older
adults have a higher prevalence of medical comorbidities, concomitant
medication use, and neurodegenerative disorders, in addition to larger
scalp to cortex distances in the prefrontal region due to age-related brain
volume changes (Lee and Kim, 2022). Indeed, trial inclusion criteria
have varied but often exclude conditions that would be common in
clinical practice, including the use of multiple concomitant drug com-
binations or the presence of co-occurring neurological or general med-
ical conditions. Few studies have been conducted in individuals with
major cognitive impairment (e.g., dementia) or other neurodegenerative
disorders, which could impact both the safety and efficacy of rTMS as
well as decision-making capacity for participation in clinical trials.
Finally, most of the studies to date have used lower stimulation in-
tensities (less than 120 % motor threshold) than typically used for adult
antidepressant rTMS trials, which could influence efficacy.

3.4.3. Peripartum depression

Despite limited evidence, rTMS is occasionally considered for peri-
partum depression as some antidepressant medications are contra-
indicated in pregnant or lactating patients (Dubovicky et al., 2017).
Sixteen studies, all small-scale, have been published on the use of rTMS
during pregnancy (N = 85) and five have been published on the use of
rTMS during the initial postpartum period (N = 49) (Pacheco et al.,
2021).

In peripartum populations, efficacy is comparable to that of the
general population, with 58 % response rate across the limited (open-
label) literature (Damar et al., 2020). Although the side effect rate is also
similar to the general population, there are concerns about risks to the
fetus or breastfeeding infant associated with any intervention. Studies to
date do not support these concerns. A recent record review of 67 births
over 20 years to mothers who received rTMS during pregnancy noted
that no mother or baby experienced a serious adverse event (Pridmore
et al.,, 2021). Modeling studies have found that a F8 TMS coil held
adjacent to the pregnant mother’s head at the DLPFC would lead to peak
electric field surrounding the fetal tissue far below established safety
thresholds (Damar et al., 2020). A long-term follow up study on 26
children who were born to mothers treated with rTMS for depression
during pregnancy found that they did not present with increased peri-
natal complications and were within normal limits in both cognitive and
motor development through age 5 years, comparable to infants who
were born to mothers with untreated depression (Eryilmaz et al., 2015).

While rTMS may have risks, there are also risks to not pursuing
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treatment. For example, compared to mothers who received treatment
for their depression during pregnancy, mothers with untreated depres-
sion were at risk for suboptimal antenatal care, poor nutrition, substance
abuse, subsequent postpartum depression, and lower likelihood of
breastfeeding. Maternal depression during pregnancy has been associ-
ated with a greater risk of prematurity, poor fetal growth, negative child
developmental outcomes, and poor maternal-infant attachment
(Grigoriadis et al., 2013). Finally, many antidepressant medications are
contraindicated during pregnancy and breastfeeding due to concerns
about the chemicals in the shared bloodstream and in the breastmilk.
This concern does not exist for rTMS. Although ECT remains an effective
treatment option for mothers experiencing depression in the peripartum
period (Rose et al., 2020), TMS represents a viable alternative for non-
psychotic major depressive disorder, with limited available evidence
suggesting a similar, if not superior, safety profile compared to ECT.

3.4.4. Conclusions and considerations

In conclusion, our consensus is that more research of rTMS in these
special populations is needed, as there is a great clinical need and a
limited evidence base. Less than 1,000 individuals are represented in the
combined literature for these groups, making accurate and reasonable
safety or efficacy determinations difficult. Nonetheless, there may be
some benefits of rTMS over pharmacological interventions in these
populations in which side effects may be more common (in older pop-
ulations) or medications contraindicated for safety concerns (pregnant
and lactating patients). Regarding rTMS safety, existing data suggest a
similar profile in children/adolescents, pregnant, postpartum, or older
adults as compared to young adults, with adverse event rates ranging
from 3.4 % to 15 % (Allen et al., 2017, Cappon et al., 2022, Lee et al.,
2021), despite potential theoretical concerns related to neuro-
development, neurodegeneration, and hormonal fluctuations.
Regarding tolerability, the most common side effects are transient
headache and neck pain, with more serious adverse events only occur-
ring in 1-2 % of patients (Cappon et al., 2022, Zewdie et al., 2020),
again mirroring the young adult literature.

As these populations are part of a federally protected class, re-
searchers and clinicians studying and treating youth, pregnant or post-
partum patients, or older adults are subject to regulations put forth by
regulatory bodies such as the FDA and their local institutional ethics
boards. Given this protected status, it is especially critical to carefully
consider risks, benefits, and alternatives to rTMS. However, patients in
these special populations may be considered for rTMS treatment with
careful screening for co-occurring conditions and concomitant medica-
tions that may impact safety, tolerability, or efficacy (e.g., stroke, dia-
betes, hypotension, neurodegenerative disorders) and close monitoring
throughout and after treatment for emergent side effects, as is standard
of care for all patients receiving rTMS. Finally, it is important to inform
the patient (as well as partners and/or guardians, as needed) of the
nascent state of the literature and, in the case of children and adolescents
under age 15, the off-label nature of the treatment at the time of this
writing (i.e., not consistent with the device manual or FDA determined
indication) and risk of insurance coverage denial. The limited extant
literature provides reassurance regarding safety and promise regarding
efficacy and highlights the importance of further research on these
populations to inform whether future label expansions may be scien-
tifically justified.

3.5. Coil design

3.5.1. Fda-cleared coils

A variety of coils have been developed for the application of TMS,
each differing distinctly in design and thereby spatial distribution of
induced electrical field (e-field). To date, four kinds of coils have
received FDA clearance for the treatment of depression — iron core coils,
figure-8 (F8) coils, and two “H coils” called H1 and H7. The iron core,
F8, and H1 coils were cleared by the FDA based on results of separate
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multicenter randomized controlled trials (RCTs) comparing active
treatment with sham TMS (George et al., 2010b, Levkovitz et al., 2015,
O’Reardon et al., 2007). The H7 coil was cleared by the FDA based on
data showing substantial equivalence to the H1 coil for the treatment of
depression (FDA, 2022, Zangen et al., 2023).

3.5.2. Electric fields of different coils

F8 coils induce more focal and superficial e-fields than H coils. The
F8 coil consists of two adjacent wings arranged to induce relatively focal
stimulation underneath the central segment in superficial cortical re-
gions (Zibman et al., 2021). The angle between the wings affects
focality, efficiency, and modeled depth of the induced e-field. H1 and H7
coils are thought to offer improved e-field depth at the cost of focality
(Deng et al., 2013) and are sometimes called “deep TMS” coils. The H1
coil consists of a flexible base that follows the curvature of the scalp. It
broadly stimulates bilateral prefrontal cortex. A head-to-head compar-
ison of the H1 and F8 coils examining the depth below the cortical
surface for which the e-field intensity remained supra-threshold showed
a depth of penetration of 1.8 cm for the H1 coil compared to 1.1 cm for
the F8 coil (Guadagnin et al., 2016), although depth of stimulation
modeling results vary (Deng et al., 2013). The H7 coil produces a broad
e-field and was designed to target the medial prefrontal cortex and
anterior cingulate cortex (Carmi et al., 2019, Roth and Zangen, 2014).

Observable clinical effects of TMS may depend on engagement of
cortical-subcortical brain networks or brain regions with distributed
connectivity (Dowdle et al., 2018, Kimbrell et al., 2002, Li et al., 2004).
Coil orientation is also an important factor to consider, as e-field
modeling suggests this variable can affect the region of neural tissue
engaged by the TMS coil (Opitz et al., 2016, Siebner et al., 2022,
Thielscher et al., 2011) and may have therapeutic implications (Tzabazis
et al., 2013). The standard approach with the F8 coil applied to the left
dorsolateral prefrontal cortex involves angling the coil towards the tip of
the nose or at a 45-degree angle to the para-sagittal plane, angled to-
wards the midline with the coil handle angled posteriorly and away from
the head (Chen L. et al., 2021, George et al., 1997, O’Reardon et al.,
2007). Little research exists comparing this coil angle to other potential
coil orientations. E-field modeling software has been incorporated into
some TMS devices to approximate the focality of stimulation. Some new
coils attempt to increase recruitment of neural populations within a
stimulated region using a rotational field, although this technology is
not yet available clinically and has limited evidence (Roth et al., 2020).

3.5.3. Efficacy of different coils

The relative efficacy of treatment with F8 versus H coils remains
uncertain due to differences in trial design and stimulation parameters.
A systematic review and meta-analysis that compared the effects of the
two coils after 10 sessions showed a larger reduction in depression
severity in H1-coil versus F8-coil studies, and a trend towards higher
remission rates in F8-coil versus H1-coil studies (Gellersen and Kedzior,
2019). However, the authors cautioned that these effects were based on
studies with small sample sizes, no placebo controls, and results after 10
session (33 % of a standard treatment course), all which may limit their
clinical application (Gellersen and Kedzior, 2019). A first RCT
comparing F8 and H1 coils and their FDA-approved protocols found
clinical superiority of the H1 standard protocol over the F8 conventional
TMS protocol in terms of response rate but notably, not in terms of
remission rate, which was the primary outcome (Filipcic et al., 2019). It
is also important to note that this trial used the outdated 5 cm rule for F8
stimulation and examined outcomes after 20 sessions, which is short of a
typical antidepressant treatment course. Other emerging data from a
large naturalist study suggest that F8 coil treatment is superior to H-coil
treatment (Pritham Raj, 2022), but these data have not yet been peer
reviewed. It is our consensus view that the FDA-cleared coils demon-
strate significant evidence of clinical efficacy for treating depression. We
contend that TMS clinicians and technicians should be fully trained in
the targeting and operation of the type of coil used at their site of
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practice.

3.5.4. Other coils

Many other TMS coils have been created including the double-cone
coil (Kreuzer et al., 2019, Monteiro and Cantilino, 2019), circular,
crown, B-shaped, cloverleaf, halo-coils and coil arrays, and about 20
other H coils (Deng et al., 2013, Roth et al., 2013). These coils have been
used in research settings and have informed safety considerations such
as seizure risk. From this research, the risk for seizure induction is
generally thought to increase with stronger e-fields and broader field
distribution (Lisanby et al., 2003). Accordingly, the relative risk of a
TMS-related seizure may be higher with the H1 coil compared to the F8
coil, but the absolute risk is low, and seizure remains a rare occurrence
(Taylor et al., 2021). See also Section 3.2.1. Safety of rTMS.

3.6. Targeting methods

TMS targeting for depression has evolved over time (Cash et al.,
2021b). Early targeting strategies were guided by the hypothesis that
frontal lobe hypometabolism was the “final common pathway” for pri-
mary depression and secondary depression following brain lesions
(Belyi, 1987, George et al., 1993, 1994, George et al., 1995, Robinson
et al., 1988, Robinson et al., 1984, Robinson and Price, 1982, Wellisch
et al., 2002). Over time, this hypothesis narrowed to the dorsolateral
prefrontal cortex (DLPFC) (Koenigs et al., 2008, Padmanabhan et al.,
2019), an area anatomically defined by Brodmann Areas 9 and 46
(Rajkowska and Goldman-Rakic, 1995a, 1995b, Rusjan et al., 2010). Of
note, this section focuses exclusively on studies using figure-8 coils,
which produce more focal magnetic fields than H-coils and are thus the
subject of significant interest related to targeting optimization. H-coils
are often referred to as “deep TMS” coils because they deliver deeper and
broader stimulation, so that targeting covers wider areas of cortex. See
Section 3.5. Coil Design for additional details about coil differences.

3.6.1. 5cmrule

The earliest TMS trials for depression typically employed the “5 cm
rule,” an empiric scalp-based measurement method that emerged from
the observation that left DLPFC is roughly 5 cm anterior to the “motor
hotspot” of the motor strip along a parasagittal line (George et al., 2000,
George et al., 1997, George et al., 1995, Pascual-Leone et al., 1996). The
“motor hotspot” refers to a region of the motor cortex functionally
responsible for movements of the hand or fingers, often defined by the
abductor pollicis brevis or first dorsal interosseous muscle of the thumb.
Indeed, the multisite FDA pivotal trial published by O’Reardon et al.
2007 (O’Reardon et al., 2007), as well as the open-label extension study
in 2008 by Avery et al. (Avery et al., 2008), used this targeting method
as a probabilistic approximation of the left DLPFC. The follow-up
multisite OPT-TMS trial (George et al., 2010a) advanced TMS target-
ing by allowing investigators to adjust coil placement when the “5 cm
rule” yielded a target that was too posterior (i.e., premotor area) on an
anatomical MRI scan. Alternatives to standard targeting may be
particularly relevant for special populations, such as children, adoles-
cents, or elderly patients, in whom neuroanatomical variability may be
more extensive (Oberman et al., 2021). Nonetheless, most FDA labels
and many TMS clinics continue to use this method for targeting, and
some device manufacturers continue to recommend this target in their
device manual and trainings.

3.6.2. 5.5 cm Rule, Beam F3 Method, and other Scalp-Based targeting
approaches

Follow-up studies continued to refine targeting based on neuro-
anatomy. These studies highlighted precision and accuracy limitations
of the “5 cm rule” (Ahdab et al., 2010, Herwig et al., 2001) and revealed
that more anterior and lateral stimulation yields better clinical outcomes
(Herbsman et al., 2009). As a result, treatment sites began to shift 5.5 to
6 cm anterior to the motor hotspot (Brunoni et al., 2017, Cash et al.,
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2021b). Other studies used the 10-20 electroencephalography system
(EEG) system to enhance precision and reproducibility (Fitzgerald et al.,
2009b, Herwig et al., 2003b, Rusjan et al., 2010) by incorporating a
patient’s own unique scalp measurements. This work inspired a shortcut
method of approximating the F3 site with just a few scalp measurements
(Beam et al., 2009, Mir-Moghtadaei et al., 2015). This shortcut, known
as the “Beam F3” method, has been widely adopted because of its
relative efficiency, precision, accuracy, and accessibility (McClintock
et al., 2018b, Trapp et al., 2020). Although more personalized, some
evidence suggests that the Beam F3 method may have similar antide-
pressant effectiveness to the 5.5 cm method in clinical practice (Trapp
et al., 2023).

3.6.3. Neuronavigation: Targeting based on structural MRI

Technological advances have further refined TMS targeting and de-
livery. For example, neuronavigation systems that leverage individual
anatomical MRI data can be used to identify and target specific brain
locations using 3-dimensional coordinates. These systems can also be
used retrospectively to mark the specific brain target coordinates
initially located with scalp-based measurements. The use of neuro-
navigation significantly reduces targeting errors or inaccuracies that
emerge from unique individual brain morphologies and variations in
inter-operator and inter-session coil placement (Caulfield et al., 2022a),
but it has not yet been shown to significantly improve treatment out-
comes when used only based on structural brain anatomy (Blumberger
et al., 2016, Cash et al., 2020, Fitzgerald et al., 2009a, Li C. T. et al.,
2020) or metabolism (Cash et al., 2020, Herwig et al., 2003a, Paillere
Martinot et al., 2010).

3.6.4. Neuronavigation: Targeting based on functional MRI

Neuronavigation has been combined with functional neuroimaging
to refine targeting. Using resting state functional connectivity (RSFC)
MRI data, pertinent brain networks can be targeted at the group level or
at the individual level (Fox and Greicius, 2010, Siddiqi et al., 2023b,
Siddiqi et al., 2023c). The predominant hypothesis in the literature is
that stimulating the region of the left DLPFC most anticorrelated to the
subgenual cingulate yields the best treatment outcomes (Cash et al.,
2019, Fox et al., 2012, Oathes, 2023, Weigand et al., 2018). The average
coordinates of this spot are known at the group level (i.e., MNI co-
ordinates x = -42, y = 44, z = 30), but a pivotal trial showing that this
targeting approach yields better treatment outcomes than probabilistic
scalp-based measurements has not been conducted (Cash et al., 2020).

There is tremendous interest in moving beyond this group RSFC
average to stimulate individualized RSFC targets based on each patient’s
RSFC data, with numerous studies trying to tackle the reproducibility
problem with various techniques (Cash et al., 2021a, Fox et al., 2013,
Siddiqi et al., 2023a, Siddiqi et al., 2021b). A few clinical trials that have
stimulated individualized targets have shown high response rates, but
these results are difficult to collectively interpret because of small
sample sizes, methodological heterogeneity, and limited head-to-head
comparator targets (Cash et al., 2021b, Cole et al., 2021, Cole et al.,
2020, Siddiqi et al., 2019, Williams et al., 2018). For example, the FDA-
cleared Stanford Accelerated Intelligent Neuromodulation Therapy
(SAINT or SNT) uses individualized RSFC targeting with a proprietary
algorithm that requires support from the device company to access.
Similarly, this algorithm is only one of several differences between
SAINT and traditional TMS — see Section 3.7.6. Stanford Accelerated
Intelligent Neuromodulation Therapy for additional details.

Alternative RSFC targeting strategies are currently being explored. In
a prospective, randomized, controlled trial, RSFC targeting based on
individualized anterior insula connectivity showed similar effectiveness
to structural MRI targeting methods (Morriss et al., 2024). Other tar-
geting approaches have been proposed based on retrospective imaging
data, from those that target the DLPFC spot most correlated with the
convergent depression network (Siddiqi et al., 2021a, 2021b) to those
that seek to modulate specific symptoms of depression (Downar and
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Daskalakis, 2013, Siddiqi et al., 2020). These latter strategies are being
studied in prospective clinical trials (Taylor et al., 2024). The extent to
which individualized RSFC targeting matters remains unclear, with one
retrospective study providing strong evidence for a small effect of anti-
subgenual cingulate targeting on treatment response prediction (Elbau
et al.,, 2023), and other RSFC targeting strategies showing limited
benefit (Morriss et al., 2024) or remaining to be directly tested. To date,
use of neuronavigation-based approaches in practice is limited, as this
technology has only recently become commercially available.

3.6.5. Conclusions and considerations

In summary, the consensus of this group is that the current standard
of care involves the use of the 5.5 cm method or Beam F3 method, with
these targeting methods holding clinical equipoise based on current
evidence in adults. Evidence suggests that targeting based on structural
or functional MRI may enhance treatment effects. When available, it
would be within standard of care to use this technology. However, ev-
idence for MRI-based targeting benefits is largely based on retrospective
data analysis, and the feasibility and accessibility of use and magnitude
of such effects needs to be demonstrated prospectively before wide-
spread adoption is likely. Additional research is needed to also explore in
which clinical scenarios these personalized RSFC-targeted approaches
offer a clinically meaningful advantage over the current standard of
care.

3.7. Stimulation protocols

The effects of rTMS pulses on the brain can vary widely based on the
stimulation protocol. Many aspects make up the stimulation protocol,
each with significance for the safety, physiologic consequences, and
potential therapeutic effects of rTMS when applied to the brain. Vari-
ables in an rTMS protocol include the frequency of stimulation (quan-
tified in number of pulses per second) and associated nested frequencies
(bursting, dynamic vs. static parameters, etc.), the pulse width, the pulse
shape, the intensity of stimulation (usually defined as a percentage of
the “motor threshold”), the number of pulses delivered continuously
before a break (the “pulse train”), the number of trains in a treatment
session, the intertrain interval (rest period between pulse trains), the
number of pulses delivered in a session (a product of the number of
“trains” and pulses in a train) or a full treatment course, and the number
of sessions delivered in a day or in a treatment course. Numerous
treatment protocols have been trialed in the treatment of depressive
disorders since the 1990 s and a few have gained FDA clearance. Some of
the most widely studied and commonly used protocols are outlined in
this section.

3.7.1. High-frequency rTMS

High-frequency rTMS is typically defined as stimulation frequencies
of > 1 Hz (>1 pulse per second), with protocols involving 10 Hz and 20
Hz stimulation generally having “excitatory” (i.e., potentiating) effects,
as demonstrated on motor cortex physiology in group samples (Miron
et al., 2021). High-frequency rTMS delivered with a F8 coil, targeting
the left DLPFC, at 10 Hz in trains of 40 pulses with intertrain intervals
(ITIs) of 26 s, and a total of 3000 pulses per session delivered at 120 %
motor threshold (See Section 3.2.4. Monitoring During Treatment Course)
was the initial US FDA-approved antidepressant protocol in 2008
(George et al., 2010b, O’Reardon et al., 2007). In 2016, the FDA cleared
a substantially similar protocol with intertrain intervals decreased to 11
s while holding other parameters constant (Carpenter L. et al., 2021).
This protocol, known as the “Dash” or “Rapid” protocol, shortened total
treatment time from 38 min to 18.75 min. Large registry studies found
that this protocol provided similar efficacy without apparent increased
risk of adverse events (Carpenter Lindal. et al., 2021, Mina et al., 2018).
In 2022, both the traditional and Dash/Rapid protocols were US FDA-
cleared for decreasing anxiety symptoms in MDD patients with comor-
bid anxiety symptoms.
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Deep TMS H-coil devices also employ a high-frequency TMS protocol
with slightly different stimulation parameters. The H1 coil, designed to
target the DLPFC, is US FDA-cleared for MDD and anxiety that is co-
morbid with MDD and utilizes a stimulation protocol that consists of 18
Hz in trains of 36 pulses (2 s) with ITIs of 20 s, for a total of 1980 pulses
per session delivered at 120 % motor threshold (Levkovitz et al., 2015).
The H7 coil, designed to target the medial prefrontal cortex bilaterally,
is also FDA-cleared for MDD using identical stimulation parameters as
the H1 coil (Zangen et al., 2023).

3.7.2. Low-frequency rTMS

Low-frequency rTMS, typically defined as a stimulation frequency of
1 Hz or less, is generally considered to have “inhibitory” (i.e., depot-
entiating) effects on cortical excitability (Miron et al., 2021). For
depression treatment protocols, it is most often delivered to the right
DLPFC. 1 Hz rTMS has less supporting evidence of antidepressant effi-
cacy compared to high-frequency TMS, and no low-frequency protocols
are US FDA-cleared for depression. However, meta-analyses show that 1
Hz right DLPFC stimulation protocols have similar efficacy to left sided
high-frequency rTMS (Berlow et al., 2020, Cao et al., 2018). There is
some evidence that higher number of pulses delivered at low frequency
is associated with better outcomes, with 1200 or more pulses having
better study outcomes than fewer pulses in double-blind sham
controlled trials (Berlim et al., 2013), and 3600 pulses having better
outcomes than 1200 in a recent head-to-head trial (Fitzgerald Paul B.
et al., 2020b). Low-frequency rTMS has the potential for lower risk of
side effects (e.g., pain at the site of stimulation, seizure) and less
expensive device requirements than other protocols (Miron et al., 2020),
although sessions are often longer (i.e., 20 min for 1200 pulses and 1 h
for 3600 pulses). It has been postulated that right-sided low frequency
treatment may be better for those patients with greater anxiety severity,
but evidence does not bear this out (Chen et al., 2019). There is sparse
evidence to suggest that 1 Hz rTMS may have a lower seizure risk than
high-frequency protocols (Reti et al., 2015), although the exact risk has
been challenging to quantify.

3.7.3. Theta-burst stimulation

Theta-burst stimulation (TBS), which mimics endogenous neuronal
firing patterns associated with long-term potentiation in the hippo-
campus (Huang et al., 2005, Huang and Rothwell, 2004, Suppa et al.,
2016), allows for the delivery of a smaller number of TMS pulses while
achieving similar modulation in cortical excitability compared to the
high-frequency rTMS protocols described above (Di Lazzaro et al.,
2011). This discovery led to the development of significantly shorter
TMS protocols, with meta-analyses of sham-controlled trials demon-
strating effectiveness (Berlim et al., 2017, Brunoni et al., 2017).
Implementation requires additional expenses including an rTMS device
with additional theta burst functionality and a suitable coil cooling
system.

The intermittent theta burst stimulation (iTBS) protocol that can
trigger an antidepressant response consists of 600 pulses, which can be
administered in 3 min per session and may enhance cortical excitability
similar to high-frequency protocols (Huang et al., 2005, Huang and
Rothwell, 2004). In 2018, the THREE-D trial showed that iTBS was non-
inferior to high-frequency rTMS with no differences in adverse effect
profile between groups (Blumberger et al., 2018). This study led to US
FDA clearance of iTBS for MDD. Notably, the original trial used image-
guided neuronavigation and a larger B70 F8 coil, both of which are not
standard clinical practice in the United States and not required to
comply with the US FDA-cleared iTBS once-daily protocol. The antide-
pressant efficacy of iTBS has now been replicated with protocols that do
not utilize neuronavigation guidance (Bulteau et al., 2022, Spitz et al.,
2022b) and confirmed by meta-analyses of sham-controlled trials
(Berlim et al., 2017, Brunoni et al., 2017).

Another brief TBS protocol in use is continuous TBS (cTBS), which
can be administered in approximately 1 min. cTBS may have inhibitory
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effects on cortical physiology, although evidence suggests significant
individual heterogeneity in excitability change with this and other rTMS
protocols (McCalley et al., 2021). Relatively few studies of cTBS for
depression exist outside of “bilateral TBS” studies (Berlim et al., 2017, Li
et al., 2018, Voigt et al., 2021), so at this time, evidence supporting the
independent efficacy of cTBS protocols for depression is inadequate.

Based on the available evidence, the consensus of the authors is that
iTBS is a non-inferior treatment for MDD compared to standard high-
frequency rTMS when delivered to the left DLPFC. Both are appro-
priate initial antidepressant treatment protocols to consider for a new
patient seeking TMS for MDD. Additional research is needed to better
understand if a non-responder to one protocol may respond to an
alternate protocol. TMS providers should consider prior TMS history,
such as whether patients have had a prior response to one protocol or
intolerable side effects with a specific protocol, when deciding on which
protocol to choose. Logistics may also play a role in medical decision-
making; for example, iTBS is not covered by all insurance plans,
although its use may increase convenience for patients with time re-
strictions due to other daytime obligations or employment, or patients
with musculoskeletal issues or chronic pain making prolonged sitting
uncomfortable.

3.7.4. Bilateral TMS

Bilateral TMS or TBS protocols are those involving stimulation
delivered, typically sequentially, to multiple stimulation sites. The most
studied protocol for antidepressant efficacy includes high-frequency
TMS of the left DLPFC and low-frequency TMS of the right DLPFC
delivered in the same treatment session. Although some studies have
suggested that sequential bilateral TMS protocols may be more effective
than protocols that stimulate a single site (Brunoni et al., 2017), a large
retrospective registry study with more than 3,000 patients showed that
sequential bilateral protocols were not superior to unilateral high-
frequency left DLPFC protocols (Aaronson et al., 2022). This study
also suggested that the order of the sequence seems to be important. In
that analysis, performing low-frequency right DLPFC stimulation first
had reduced efficacy compared to performing left DLPFC high-frequency
stimulation first (Aaronson et al., 2022). However, several randomized
controlled trials suggest right-to-left sequential bilateral TMS may be
efficacious, so further prospective, controlled studies may be needed
(Blumberger et al., 2016, Blumberger et al., 2012, Fitzgerald et al.,
2006).

3.7.5. Accelerated TMS

Accelerated TMS refers to protocols that deliver multiple TMS ses-
sions in a day, designed with the intention to achieve more rapid anti-
depressant treatment effects (George et al., 2014, Holtzheimer et al.,
2010, Van Rooij et al., 2023) or reduce logistical challenges associated
with a 30-day treatment course. There are many methods of delivering
accelerated TMS, with trials delivering anywhere from 2 to 10 sessions
per day, combining different treatment targets, different targeting
methods, different total number of pulses and sessions, and different
stimulation paradigms.

In general, research suggests that accelerated TMS protocols are
efficacious, although it is unclear if they lead to a more rapid response or
achieve higher efficacy than standard, once-daily treatment protocols
(Caulfield et al., 2022b, Chen et al., 2020, Chen et al., 2023, Chen L.
et al., 2021, Fitzgerald Paul B. et al., 2020a, Fitzgerald et al., 2018,
Kaster et al., 2020, Sonmez et al., 2019, Yu et al., 2023). For example,
the CARTBIND study compared two active TMS sessions per day, sepa-
rated by 54 min, to one extended active and one sham session per day,
and showed that the overall outcomes and trajectory of response were
similar for both groups (Blumberger et al., 2021). In a meta-analysis of
accelerated rTMS protocols applied to the left DLPFC, Yu et al. suggested
that there is a dose-response effect associating more TMS sessions per
day and total pulses per day with higher efficacy, although this rela-
tionship was absent for the total number of pulses in a session or the total
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number of overall sessions. Indeed, evidence suggests that changing the
number of pulses delivered in a treatment session can significantly alter
cortical excitability, with significant individual heterogeneity (McCalley
et al., 2021).

Nonetheless, retrospective studies of TMS registry data with large
samples (N > 5,000) found that patients who received more pulses per
TMS session had superior clinical outcomes (Sackeim et al., 2020) and
extending treatment courses past the typical 30-36 sessions showed
additional benefit (Hutton et al., 2023a). Taken together, these studies
suggest that adding additional pulses to a treatment course could
improve outcomes, although the most effective way to do this remains to
be worked out. Comparative, prospective trials are challenging, and
published meta-analyses often suffer from confounds such as the pa-
rameters via which the pulses were delivered (i.e., 600 pulses of iTBS are
not equivalent to 600 pulses of 10 Hz rTMS). Most of the studies for
accelerated TMS protocols have focused on use of relatively focal F8
TMS coils; accelerated deep TMS studies are limited but show impressive
depression response and remission rates around day 3-4 of accelerated
treatment, irrespective of the total number of daily sessions delivered to
the prefrontal cortex (Roth et al., 2023). A review of the efficacy and
safety of accelerated theta burst protocols is provided by (Cole et al.,
2024) and highlights the variability in protocol parameters and response
rates. The most effective published protocol to date has been the Stan-
ford Accelerated Intelligent Neuromodulation Therapy, with most other
protocols achieving efficacy similar to standard daily rTMS or iTBS
treatment.

3.7.6. Stanford accelerated Intelligent neuromodulation therapy

The Stanford Accelerated Intelligent Neuromodulation Therapy
(SAINT/SNT, referred to as SAINT throughout) protocol, discussed
previously, is one promising implementation of accelerated TMS. This
protocol employs 90,000 TMS pulses delivered in 10 sessions of iTBS per
day, 1800 pulses per session, with a 50-minute interval between ses-
sions. This protocol was delivered for 5 consecutive days in the initial
studies and resulted in high remission rates (approximately 80-90 %) in
both an open label and a randomized controlled trial (Cole Eleanor J.
etal., 2022, Cole et al., 2020) with minimal side effects and no seizures.
The SAINT neuromodulation system, which delivers the SAINT protocol,
was subsequently FDA cleared in 2022. Notably, in addition to the use of
more sessions and more total TMS pulses than other TMS protocols at the
time, the SAINT protocol included other unique features such as
functional-connectivity MRI targeting to identify a DLPFC coordinate
anti-correlated with the subgenual anterior cingulate cortex (see Section
3.6. Targeting for additional details)) and stimulation at 90 % of motor
threshold with a depth correction for scalp-to-cortex distance at the
DLPFC target. The numerous parameters that constitute SAINT have not
been systematically tested against other potential parameters, a general
challenge for TMS devices and protocols due to the wide parameter
space. Thus, the safety and efficacy of SAINT are only known for the
comprehensive and unified delivery of the SAINT protocol using the
SAINT neuromodulation system per its FDA clearance. At the time of this
publication, additional studies are needed, with some underway, to
provide additional independent replication of the currently published
SAINT clinical trials, to evaluate the reproducibility of the MRI targeting
algorithm, to assess long-term durability of response, and to test the
performance in additional settings (e.g., inpatient units). Studies
comparing the SAINT protocol to other US FDA-cleared rTMS devices
and protocols, or to modified accelerated protocols (e.g., without fMRI
targeting or with different dosing schedules) are needed to improve the
knowledge base of the relative weight of contribution of specific TMS
treatment parameters on overall safety and antidepressant efficacy. As
SAINT was FDA cleared in 2022 and only became commercially avail-
able in 2024, additional time is needed to see how this new technology
will be utilized by clinicians.
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3.7.7. Other protocols

Various other protocols have been developed in recent years and
warrant brief mentioning here. Priming TMS refers to the use of high
frequency TMS to enhance plasticity in or “prime” a subsequent protocol
(e.g., low frequency TMS (Cheng et al., 2021, Fitzgerald et al., 2008, Iyer
et al., 2003) or ECT (Rotharmel et al., 2021)). Early evidence for this
approach is positive, but larger clinical trials are needed to confirm these
findings (Brunoni et al., 2017).

Quadripulse TMS, a technique for delivering bursts of four TMS
pulses in rapid succession, is capable of rapidly and robustly enhancing
cortical excitability, although its antidepressant efficacy remains to be
thoroughly investigated (Matsumoto and Ugawa, 2020).

Synchronized TMS (sTMS) refers to the use of TMS pulses synchro-
nized to specific EEG frequencies, often the alpha frequency (Corlier
et al., 2019, George et al., 2023, Leuchter et al., 2015, Philip et al.,
2019a, Zrenner et al., 2020). Some evidence exists to suggest that alpha-
synchronized TMS can alter the alpha frequency with unclear clinical
benefit (Zrenner et al., 2020), with some studies suggesting improved
treatment response (Corlier et al., 2019) and others suggesting equivocal
or potentially worse response than non-synchronized TMS (George
et al., 2023). Advertised forms of sTMS include magnetic resonance
therapy (MeRT) and low-field synchronized TMS, the latter of which
involves use of rotating spherical neodymium magnets along the midline
of the scalp to deliver low-field sinusoidal waveform stimulation syn-
chronized to alpha EEG frequency. Although low-field STMS protocols
may be better tolerated than standard rTMS (Leuchter et al., 2015), data
on antidepressant efficacy is absent for MeRT and mixed for low-field
sTMS (Cook et al., 2019, Leuchter et al., 2015, Philip et al., 2019a,
Philip et al., 2019b), with sham treatment or non-synchronized TMS
performing as well as active sTMS treatment (additional unpublished
data available on clinicaltrials.gov, NCT03288714). Additional benefit
from using EEG to synchronize TMS pulses is thus not supported by the
available literature, and MeRT and sTMS protocols are not recom-
mended at this time.

3.7.8. Magnetic seizure therapy

Magnetic seizure therapy (MST) refers to the use of TMS to induce a
seizure, inducing antidepressant effects through a mechanism similar to
that of ECT. Evidence to date suggests that MST can induce a more focal
seizure than ECT, with potentially less side effects (Daskalakis et al.,
2020, Deng et al., 2023, El-Deeb et al., 2020, Lisanby, 2002, Sun et al.,
2018). Furthermore, recent data from a randomized clinical trial sug-
gests similar efficacy to ECT (Deng et al., 2023, El-Deeb et al., 2020), and
a double-blind non-inferiority trial comparing MST and ECT in adults
with MDD has recently completed enrollment and will provide addi-
tional information on antidepressant and cognitive outcomes
(Daskalakis et al., 2021). MST is currently unavailable outside of
research clinical trials in the United States.

3.7.9. Conclusion and considerations

Despite the wide parameter space, enhancements to TMS stimulation
protocols have resulted in significant advances related to the efficacy
and efficiency of TMS for depressive disorders. A summary of consid-
erations for TMS protocols can be found in Table 1.

3.8. Treatment optimization

In addition to adjustments to targeting techniques and stimulation
protocols, other methods have been studied in attempts to augment or
optimize the TMS antidepressant response. Here we will focus on four
frequently studied areas: 1) optimizing dosing, 2) combining TMS with
psychotherapy; 3) combining TMS with medications; and 4) performing
maintenance TMS treatments to sustain benefit.

3.8.1. Optimizing dosing
As discussed in Section 3.7.5 and 3.7.6., the dose (i.e., number of
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treatments) of TMS needed to produce an optimal antidepressant
response is under investigation. A recent analysis of a large clinical
dataset of depressed patients treated with rTMS concluded that those
who received fewer than 30 sessions had inferior responses and that
patients whose treatment was extended beyond the FDA-cleared 36
sessions continued to derive additional antidepressant benefit (Hutton
et al., 2023a). In a similar study, a larger number of pulses per session
was significantly associated with higher response and remission rates
(Sackeim et al., 2020). These findings are in line with similar results for
accelerated protocols (Yu et al., 2023), and the considerable dose in-
crease employed in SAINT. Trials are underway to further optimize
r'TMS dosing.

A practical limitation in clinical practice is insurance coverage,
which typically limits the maximum number of treatments to 36. The
above data suggest that patients should be advised to receive the entire
treatment course. However, some studies have found that poor response
after 10 treatments was predictive of nonresponse overall (Feffer et al.,
2018, Spitz et al., 2022a). Others have contested this finding, high-
lighting that there is a subset of patients who do not exhibit a response
until after 20 treatments (Beck et al., 2020). It is therefore our consensus
that patients should generally be encouraged to receive all 36 treatment
sessions unless clinical worsening or intolerance necessitates transition
to a different therapy. In cases of lack of response after four weeks of
treatment, a risk-benefit discussion with the patient that addresses the
possibilities of delayed response and non-response should guide the
decision regarding continuing treatment.

3.8.2. Combining TMS with psychotherapy

Evidence suggests that TMS can have state-dependent effects (Sack
et al., 2024). Thus, there is a growing interest in efforts to develop new
protocols for combining TMS with various forms of evidence-based
psychotherapy (Xu, 2023), based in part on the premise that TMS may
promote synaptic plasticity, which in turn may support therapeutic
changes in cognition and behavior. However, few studies have directly
tested this hypothesis in depression. In one such study (Donse et al.,
2018), 10 sessions of rTMS targeting the dorsolateral prefrontal cortex
(DLFPC) were combined with a structured psychotherapy informed by
cognitive behavioral therapy principles. 66 % of participants showed a
significant treatment response, but there was no control group that
would allow the investigators to assess whether the combined treatment
was superior to rTMS alone. Other pilot studies lend tentative support to
a synergistic effect of combining TMS and psychotherapy (José et al.,
2021, Neacsiu et al., 2018), but there is a need for larger scale, ran-
domized controlled trials testing this approach. Future studies should
evaluate whether different types of evidence-based psychotherapy are
better suited for TMS augmentation, and when in relation to the TMS
treatment concomitant psychotherapy may best improve outcomes (e.g.,
before, during, or after treatment sessions, or between sessions in
accelerated, spaced stimulation protocols). For example, one study
demonstrated the challenges of providing mindfulness-based therapy
during TMS sessions (Cavallero et al., 2021). Another area of interest
related to treatment optimization which requires further exploration
relates to enhancing the therapeutic potential of state-dependent TMS
effects using cue induction (as is used successfully in TMS for OCD or
tobacco use disorder), closed-loop TMS-EEG protocols, cognitive tasks,
or neuromodulation protocols combining TMS with other therapeutic
modalities.

3.8.3. Augmentation with medications

Another augmentation strategy involves optimizing a patient’s
existing medication regimen or combining TMS with plasticity-
promoting psychopharmacological agents. As discussed in Section
3.3.2. Predictors of Antidepressant Response: Concomitant Medication Use,
rTMS is effective with concomitant use of antidepressant medications
(Hung et al., 2020, Sehatzadeh et al., 2019), specifically SSRIs (Zaidi
et al., 2024), and is associated with better outcomes than
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antidepressants alone. Regarding other classes of medications, retro-
spective observational studies suggest that benzodiazepine use may be
associated with suboptimal outcomes (Blumberger et al., 2018, Hunter
etal., 2019, Kaster et al., 2019), while stimulant use may accelerate and
enhance treatment response (Hunter et al., 2019, Wilke et al., 2022).
Prospective randomized trials are needed to address these questions.
Another approach is co-treatment with plasticity-promoting agents,
based on the observation that TMS acts in part through mechanisms that
involve synaptic plasticity (Hallett, 2000, 2007, Huang et al., 2007,
Wankerl et al., 2010), an N-methyl-D-aspartate (NMDA)-dependent
process which may be deficient in depression (Duman and Aghajanian,
2012, Dwivedi et al., 2003, Labonté et al., 2017). In support of this
hypothesis, a randomized controlled trial (Cole J. et al., 2022) showed
that combining left DLPFC iTBS with 100 mg D-cycloserine, an NMDA-
receptor partial agonist that enhances NMDA-receptor signaling,
administered before treatment resulted in higher response rates
compared to iTBS alone (74 % vs. 29 %). Further study of this and other
agents that may enhance synaptic plasticity is needed before definitive
statements can be made about their routine use as adjuncts to rTMS.

3.8.4. Maintenance TMS

Maintenance or “preservation” TMS refers to the use of TMS treat-
ments to maintain benefits from an acute course of antidepressant
treatment. Maintenance TMS protocols have typically been studied in
and applied to patients who respond in the acute phase to a conventional
course of rTMS but are at high risk of relapse. However, maintenance
TMS has also been applied as a method for sustaining the benefits of ECT
and pharmacotherapy as well. A recent systematic review highlighted
the lack of controlled trials studying maintenance TMS and the hetero-
geneity of available study designs (Wilson et al., 2022). Open questions
relate to when to deliver TMS (fixed vs. symptom-triggered schedule),
how to schedule maintenance TMS (e.g., once monthly vs. clustered
treatments), how to assess response, and when to stop maintenance TMS
(i.e., how many treatments to administer after it is reintroduced).
Another common practice — gradually tapering TMS treatment fre-
quency at the end of an acute TMS treatment series — has little empirical
support and requires further investigation of antidepressant durability
compared to abrupt cessation of treatment.

“Clustered maintenance” rTMS is one such strategy in which patients
receive monthly maintenance rTMS sessions comprised of five rTMS
treatments delivered over a two-day period on a regular basis. In an
open-label study (Fitzgerald et al., 2013), rTMS responders received
clustered maintenance, yielding a mean duration of remission of 10.5
months. Relatively few randomized controlled trials have evaluated
maintenance TMS protocols (Wilson et al., 2022), with two studies
reporting statistically significant benefits (Benadhira et al., 2017, Rap-
inesi et al., 2015). However, in a third study involving single TMS
maintenance sessions delivered monthly (Philip et al., 2016), there was
no significant benefit over observation alone. Together, these studies
suggest that clustered maintenance protocols have the potential for
prolonging remission, but monthly single-session maintenance protocols
may not be useful. Our consensus view is that larger scale randomized
controlled trials examining efficacy as a function of treatment interval
will be needed to establish the utility of maintenance protocols.

3.9. Training, Privileging, and treatment roles and responsibilities

Training and privileging in the use of transcranial magnetic stimu-
lation for clinical use has varied among institutions, states, and coun-
tries. Many stakeholders are involved in the process, including a
spectrum of clinical providers, insurance companies, device manufac-
turers, and hospital systems. The goal of training and privileging in TMS
should center on ensuring the competency of the treatment team and the
safety of the patient while also maintaining access to care for those
suffering from disorders responsive to TMS. This process should there-
fore include competencies for both the supervising clinician and the
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TMS technicians working under that supervision.

3.9.1. Definition of roles

The “prescribing TMS clinician” is the clinician who prescribes TMS
treatment for a patient after reviewing their history and examining the
patient. The “covering” (or “attending”) TMS clinician is the clinician
directly responsible for TMS treatment of a patient on any given day.
The covering clinician on any given treatment day may or may not be
the same person as the prescribing clinician. The TMS “technician” or
“operator” is the clinician or non-clinician who directly administers TMS
to a patient who has been prescribed TMS and is under the direct su-
pervision of the covering clinician. The “medical director” is the medi-
cally licensed TMS clinician overseeing administrative aspects of the
service, often in addition to providing patient care.

3.9.2. Who can prescribe TMS?

In the US, the decision regarding who has the legal authority to
prescribe TMS has largely been rendered at the level of the state, as state
legislation often defines scope of practice. As of December 2023, the
national Medicare policy states that the order for TMS treatment or
retreatment for major depressive disorder should be written by a psy-
chiatrist (M.D. or D.0O.) who has examined the patient and reviewed the
record. The physician should have experience administering TMS
therapy.

The Medicare policy goes on to state that “non-physician practi-
tioners” including physician assistants, advanced practice registered
nurses, nurse practitioners, and other advanced practice providers may
order TMS treatment if it is within their scope of practice in the state in
which they are licensed, with the same training requirements as noted
for physicians above.

The consensus view of the authors is that clinically licensed practi-
tioners of TMS for the treatment of depression should receive specific
training in the administration of TMS, demonstrate competency in the
safe and effective use of TMS, and have extensive training and expertise
in the diagnosis and treatment of depressive disorders, especially
treatment-resistant cases. This aligns with the prior guidelines that state
a prescriber should be a clinician “with prescriptive privileges who is
knowledgeable about, trained, and credentialed in rTMS” (McClintock
et al., 2018a). Examples of how to operationalize the above consider-
ations regarding the necessary knowledge, training, and certification for
prescribing TMS are outlined in Section 3.9.4. and Table 3.

3.9.3. Who can administer TMS?

The national Medicare policy as of December 2023 states that TMS
treatment should be given under direct supervision of the physician (or
non-physician practitioner), although the physician does not need to
personally provide the treatment. The clinician should be “present in the
area” per this policy and have experience with TMS. It is the consensus
of the authors that a TMS clinician, if not the same person as the pre-
scribing clinician, should nevertheless have the same qualifications,
described above, as a prescribing clinician.

3.9.4. Certification process for clinicians to prescribe and administer TMS

Currently, TMS proficiency is monitored and certified in various
ways. Certification occurs at the level of the individual institution,
hospital system, and clinic. Usually, this process involves new trainees
completing a certain amount of observed and supervised treatment
sessions, with a focus on demonstrating proficiency with motor
threshold determination, targeting and coil placement (stimulation site
determination), parameter determination and settings, and knowledge
on safely using the equipment and managing emergencies. A prior
publication on TMS training by Fried et al. suggested that training
should include “substantial emphasis on theoretical, didactic compe-
tencies and, safety and ethics, in addition to practical skills”(Fried et al.,
2021). These competencies include domains of core knowledge, safety,
ethics, and technical/hands-on training. The details of these
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Table 3
Example competency table for TMS, adapted with edits from (Fried, et al.,
2021).

Domain Competency Clinician  Technician
Core Basic Mechanisms of TMS X X
Knowledge Design Fundamentals X X
Basic Neuroanatomy and Physiology X X
Safety and Risk X X
Regulatory Landscape X )
Clinical Training and Experience in X X)
the Assessment and Management of
the Underlying Condition for Which
TMS is Being Used (e.g., treatment-
resistant mood disorders,
psychiatric disorders)
Knowledge of a Typical Treatment X X
Course and Standard Operating
Procedures at Local Site
Knowledge of Literature including X xX)
Landmark Trials, Safety and Clinical
Standard Documents
Safety and Adverse Effects of TMS X X
Ethics Screening and Risk Stratification X )
Recognizing and Managing Seizure X X
or Syncope
Hearing Protection X X
Recognizing and Addressing Needs X X)
of Special Populations
Recognizing and Addressing Acute X X
Mental Health Concerns
Technical & Device Operation, Basic X X
Hands-on Maintenance, and Troubleshooting
Scalp Measurement Procedures X X
Basic Neurophysiology (e.g., EMG X X
vs. visible twitch)
Targeting TMS (Coil location, X X
orientation, angle; neuronavigation;
scalp-based targeting)
Basic Applications of TMS (Finding X )
motor hotspot, assessing motor
threshold)
Basics of Different Clinical Protocols X X

(high frequency, low frequency,
theta burst stimulation)

X = recommended competency; (X) = desirable but not required.
Rccceferences.

Fried, P. J., Santarnecchi, E., Antal, A., Bartres-Faz, D., Bestmann, S., Carpenter,
L. L., Celnik, P., Edwards, D., Farzan, F., Fecteau, S., George, M. S., He, B., Kim,
Y. H., Leocani, L., Lisanby, S. H., Loo, C., Luber, B., Nitsche, M. A., Paulus, W.,
Rossi, S., Rossini, P. M., Rothwell, J., Sack, A. T., Thut, G., Ugawa, Y., Ziemann,
U., Hallett, M., & Pascual-Leone, A. (2021). Training in the practice of nonin-
vasive brain stimulation: Recommendations from an IFCN committee. Clin
Neurophysiol, 132, 819-37.

competencies are reviewed in Fried et al. and are beyond the scope of
this document. However, certification in TMS for the treatment of mood
disorders should be conditional with demonstrating achievement of
such core competencies. Examples of such core competencies are shown
in Table 3, which can serve as a common framework for constructing a
program of training and assessment of new clinicians and device oper-
ators (referred to going forward as “technicians™). However, no single
universal program or set of competencies has been established, as the
needs of individual clinical systems may vary. Formal training courses
are currently offered by academic institutions and professional societies,
and additional training content is freely available online (Lisanby,
2020). Some professionals have proposed the development of stan-
dardized, subspecialty fellowship training programs for TMS, such as
those offered through the American College of Graduate Medical Edu-
cation or the United Council for Neurologic Subspecialties, as the
treatment procedure becomes more complex and indications expand
(Trapp et al., 2023a, Trapp and Williams, 2021). To date, this is not a
requirement.
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Although device operation basic skills are frequently taught by the
device manufacturer due to nuances of each TMS device, this is typically
considered insufficient training in isolation. Prior consensus guidelines
have suggested that TMS providers complete this formal training or
obtain additional training via peer-to-peer direct supervision (Perera
et al., 2016), and that all members of the treatment team (staff and
clinical providers) receive appropriate product training. Written docu-
mentation of training completion should be obtained and archived for
each treatment team member. Each clinic should have a procedure for
maintaining skills and continuing education in the field, as it continues
to rapidly evolve.

3.9.5. Minimum qualifications for TMS technicians

Minimum qualifications for a TMS technician are outlined elsewhere
(Fried et al., 2021, Rossi et al., 2021). At a minimum, TMS technicians
should be trained and certified to deliver TMS, including device oper-
ation training, TMS coil targeting, and recognition and management of
side effects. Technicians should monitor the patient throughout the
treatment administration, watch for adverse events, ensure contact be-
tween the patient’s scalp and the coil, and adjust coil position to ensure
the target remains consistent with patient’s head movements. Techni-
cians should be trained to monitor for motor cortex excitation and to
follow specific guidelines for notifying the supervising clinician about
concerns, such as for motor activation, seizure-like or syncopal activity,
or concerning comments/behaviors related to suicidal ideation, mania,
psychosis, panic attack, or other behavioral concerns. Technician qual-
ifications and responsibilities, beyond the above minimum qualifica-
tions, may vary across TMS practices based on the level of comfort of the
TMS provider and the level of training and experience of the TMS
technician. For example, technicians may or may not be trained in
assessing the motor threshold and initial targeting of the TMS treatment,
based on the supervision structure implemented by the prescribing or
supervising clinician.

3.9.6. Responsibilities

The medical director, prescribing clinician, or supervising clinician
must ensure the competency and adequate supervision of TMS techni-
cians performing the TMS procedure. The covering TMS clinician (may
or may not be the medical director or prescribing clinician) is at all times
responsible for the management of the TMS treatment team, including
ensuring the safety and appropriate clinical management of the patient
during the TMS procedure. In the context of this responsibility, the
covering clinician should be available to provide assistance to the
technician, including assessing safety concerns and responding to clin-
ical emergencies.

The procedure for calculating the TMS “dose” intensity is the motor
threshold determination, which involves delivering stimuli to the pri-
mary motor cortex and monitoring for motor movement (either visually
or with electromyography) to determine the minimum TMS stimulus
intensity necessary to induce a motor evoked potential in the muscle
group of interest, often the abductor pollicis brevis or first dorsal
interosseous in the hand. Motor threshold determination is typically
performed by the prescribing clinician or another clinician certified in
the use of TMS. Conduct and oversight of initial and subsequent motor
thresholds or daily treatment sessions may be delegated by the covering
clinician to another appropriately certified and experienced member of
the clinical team but should be supervised by a medically licensed
clinician. All clinical staff should maintain appropriate training
(including basic life support) to support their role as first responders to
potential clinical emergencies including, but not limited to, seizure,
syncope, and acute suicidal ideation. How this training is obtained and
verified should be the responsibility of the medical director of the TMS
program.
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3.10. Barriers to treatment

The literature describing barriers to access for antidepressant treat-
ment with neuromodulation technologies is limited. Most of the pub-
lished literature has focused on ECT (Philpot et al., 2002, Wilkinson
et al., 2021), and the studies were based either on small, qualitative
surveys or practitioners’ viewpoints. A recent paper that highlighted
perceived barriers and ethical concerns about neuromodulation,
including TMS, was an interview study by Cabrera et al. that was fol-
lowed by a survey study (Cabrera et al., 2022, Cortright et al., 2024).

Among available antidepressant strategies, rTMS has practical ad-
vantages for patients. Indeed, it is easily administered on an outpatient
basis, allows patients to transport themselves to and from clinic, can take
less than an hour for the total procedure, and tends to be well tolerated.
Nonetheless, important practical barriers to its uptake and imple-
mentation remain. Lack of access to TMS is a key barrier (Cabrera et al.,
2022, Health, 2021), which reduces the opportunity for eligible patients
who might benefit from the treatment, or at best delays care and can
limit the total treatment regimen (Health, 2021). Access barriers include
financial barriers, geographical availability of TMS providers, racial
disparities in depression diagnosis and access to neuromodulation
treatments (Black Parker et al., 2021), space or scheduling limitations,
lack of awareness amongst referring providers, lack of healthcare pro-
viders with available TMS devices, and limited training and expertise
amongst providers for performing particular TMS protocols (Cabrera
et al., 2022, Cortright et al., 2024). Other related barriers may include
the inability of patients to obtain appointments with TMS providers,
transportation limitations, and the need to be released from work or to
arrange childcare for treatment (Cabrera et al., 2022, Cortright et al.,
2024).

Key barriers to rTMS adoption across patients, caregivers and
members of the general public were the perception of limited evidence
of treatment effectiveness and lack of understanding about the inter-
vention (Cabrera LY, 2022, Cortright et al., 2024). Another common
barrier for patients seeking rTMS treatment is cost and variability in
insurance coverage. While TMS is generally more expensive than first-
line treatments, a recent cost-effectiveness analysis that compared
TMS to antidepressant medications after a first treatment failure for
depression in newly diagnosed patients found that rTMS can be a cost-
saving and clinically effective therapy when considered over the entire
life of the patient (Voigt et al., 2017). More work remains to be done to
systematically compare the cost-effectiveness of different TMS protocols
with other first line treatments and other neuromodulation modalities.
An additional area in need of further exploration relates to the cost-
effectiveness of maintenance TMS protocols; little data exists on the
use of TMS as a maintenance treatment following an acute series of TMS
or ECT, or on the use of pharmacologic agents to maintain the benefits of
an acute TMS course. Thus, these strategies are not currently covered by
most insurers, and practitioners resort to the common practice of
providing acute treatment and monitoring for patient relapse before re-
treating.

In terms of insurance coverage, while rTMS is covered by most major
insurance plans, there remain problems with the administrative burden
and associated requirements for patients to realize this benefit, such as
with off-label use in individuals under the age of 21 (Cabrera et al.,
2022, Weissman et al., 2023) Another example is the requirement by
many Medicare carriers and private insurers that various trials of
medication therapy must be attempted before treatment with rTMS
despite the lack of evidence to support this policy (Weissman et al.,
2023). Insurance criteria can also vary by state and insurance carrier,
and these criteria can often fall victim to outdated interpretations of the
scientific literature as insurance providers struggle to keep pace with the
advancements in the field of TMS, especially in an environment where
they are not incentivized to do so. Data from a national survey of four
different stakeholders found that across all surveyed groups, those
assigned to rTMS were more likely to report out-of-pocket costs and lack
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of insurance coverage among their primary perceived barriers (Cabrera
LY, 2022, Cortright et al., 2024).

Time constraints were a commonly mentioned barrier in a recent
study that examined different neuromodulation therapeutics (Cabrera
et al., 2022. Findings from a survey highlight rTMS frequency of treat-
ment among the top three barriers selected by psychiatrists (Cabrera LY,
2022, Cortright et al., 2024). Even in the case of new accelerated TMS
protocols, other logistical challenges to implementing such protocols
were reported (e.g., time commitment by patient needed for long visits,
space limitations, and limitation on the TMS operator time to deliver
longer daily protocols).

Important barriers that impact practitioners include cost of equip-
ment, the need for space and technicians, and lack of training in
administering TMS. Not all training programs offer or require training in
TMS, and the degree of exposure trainees receive can vary across
training institutions. These barriers lead to a lack of direct skill in the
technique as well as limitations of knowledge and attitudes towards TMS
amongst the broader community of mental health providers. Indeed, a
pilot assessment of psychiatrists (N = 16) found knowledge gaps when it
comes to the efficacy and tolerability of rTMS (Mehalick and Laje,
2020). Consequently, even though rTMS was first cleared by the FDA for
depression in 2008, this study and others suggest that it remains unfa-
miliar to many healthcare professionals, patients, and families (Cabrera
etal., 2022, Goldbloom and Gratzer, 2020). This highlights the need for
more education and training for patients and healthcare providers, with
a specific focus on TMS (see Section 3.9. Training, Privileging, and Treat-
ment Roles and Responsibilities). Finally, high-expense, high-resource
technological enhancements to TMS treatment, such as the use of neu-
ronavigation equipment or MRI-based targeting procedures, may exac-
erbate already limited access to TMS if deemed standard of care.

Many of these barriers to care are even more pronounced in low- and
middle-income countries, where equipment costs, lack of insurance
coverage, lack of access to specialized facilities or expertise, lower
prevalence of mental health awareness, and resource limitations such as
reduced access to electricity can further complicate patient access to
TMS. As TMS and other neurostimulation interventions are increasingly
considered frontline, essential therapies in mental heathcare (Yam,
2024), more research on how to change policies and expand access is
needed (Patel et al., 2009), with some philanthropic organizations
making expansion of TMS access their global mission.

TMS is a well-tolerated and cost-effective treatment with several
barriers to adequate patient access to this service. The consensus of the
authors is that education and training on TMS should be emphasized in
residency training programs, and ongoing TMS advocacy emphasized
with insurance carriers in relation to new treatment approaches. These
efforts can address current key barriers to the use of TMS, which include
lack of access to experienced providers and lack of provider and patient
understanding of the procedure.

3.11. Patient, Family, and Advocate education

An important factor in improving access to care involves educating
not only the clinicians, but also the patients, their families, and other
mental health advocates about TMS. This increases awareness of TMS
amongst patients and their supporters, enabling them to make informed
decisions about their care and the options available to them. Useful, free
patient-oriented resources have been made available by U.S. organiza-
tions such as the Clinical TMS Society (https://www.clinicaltmssociety.
org/patients) and the National Institutes of Mental Health (https:
//www.nimh.nih.gov/news/media), among others.

3.12. Documentation
Regarding best practices for documentation, we formulated our

current considerations based on what we previously reported
(McClintock et al.,, 2018a). A pre-treatment assessment note (see
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Table 4
Assessment Note Recommendations.
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Table 5
Procedure Note Recommendations.

Assessment Note

Procedure Note

Comprehensive psychiatric
assessment

Symptomatology
Comorbid disorders
- Current treatments (pharmacologic and non-
pharmacologic)
Treatment history
Dose, duration, and outcome of prior
medications
Prior TMS course(s), outcomes, and durability
of effects
Assessment of risk factors and contraindications
for TMS
- Baseline mood rating scale(s)
- Mental status exam
- Focused physical exam
Diagnosis and assessment Indication for TMS
Plan - Discussion of risks, benefits, and alternatives
- Prescription for rTMS:
e Number of treatments
e Frequency of treatment
e Stimulation site and targeting method
e Stimulation dose (e.g.: % motor threshold)
e Stimulation protocol (e.g.: 10 Hz, iTBS, etc.)

Medical and surgical history

Objective

Table 4) should document the indication for TMS, potential risks and
benefits, as well as confirmation of consent to treatment. Procedure
notes (see Table 5) should document treatment protocols, clinical pro-
gression, and treatment-related side effects. The use of rating scales to
establish baseline symptom severity and monitor clinical progression
should be documented, which is consistent with the latest APA Practice
Guideline for treatment of depression (Gelenberg et al., 2010). At min-
imum, a mood rating scale should be obtained pre- and post-treatment.
The items included in Tables 4 and 5 should be considered as the ideal
framework for documentation, and individual clinical sites may add or
modify items, as necessary.

4. Conclusion

Since its initial FDA clearance in 2008, TMS has increasingly become
a more frequently utilized treatment approach for depressive disorders,
primarily major depressive disorder. The amount of literature on this
topic has increased almost exponentially in recent years (McLean,
2019), and this rapid growth presents a challenge for clinicians hoping
to synthesize and interpret the evidence to inform clinical decisions and
optimize patient care. These updated consensus statements build upon
the 2018 NNDC/APA consensus recommendations and highlight topical
issues in TMS clinical practice for mood disorders, including brief re-
views of the evidence for efficacy, safety, predictors of treatment
response, considerations for special populations, targeting methods,
stimulation protocols, coil design, augmentation and optimization
strategies, and barriers to access. We also provide consensus statements
on documentation standards, training and privileging, and roles and
responsibilities for providers considering the integration of TMS into
their clinical practice. Although many topics require additional
research, these updated considerations attempt to consolidate expert
opinion and practice in the administration of this treatment technique.

Limitations of this review include those inherent to the endeavor of a
finite group of experts attempting to consolidate a large amount of data
into a finite document. These include limitations on knowledge and
awareness of specific literature more recent than the date of the sys-
tematic data capture; geographic and diversity limitations of having a
predominantly North American consensus committee membership; and
variability in method of feedback provided as not every committee
member was able to attend every consensus meeting, resulting in a mix
of written and oral feedback from committee members. The authors
acknowledge that TMS is practiced differently in different settings based
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Date of treatment

Start & stop time of treatment
Indication (Primary diagnosis)
Time-out

Patient status

Session type

Treatment and course number
Coil type

Stimulation target

Targeting method

Stimulation protocol
Train duration
Inter-Train Interval (ITI)

Number of pulses per session
Stimulation intensity

Motor threshold (MT)

Bilateral stimulation

Clinical progress &
observation

Patient activity during session

Treatment-emergent adverse
effects

Reason for change in
treatment plan

Document time-out was performed to confirm
correct patient, correct treatment protocol, and
presence of consent

Outpatient or inpatient

Acute/index or maintenance

e.g., #20, 3rd treatment course

e.g.: H-coil, figure-of-8, etc.

Be specific; e.g., Beam F3, 5.5 cm anterior to motor
cortex, or neuronavigated (specify
neuronavigation modality)

e.g.: 10 Hz, iTBS, aiTBS, DASH, 20 Hz with OCD
provocation

In seconds

In seconds

- Ideally specified as % motor threshold due to
stimulus variability between machines.

- Include both target intensity and actual intensity
delivered

- If applicable, include start & end intensity

Specify if % machine output or other

Include when it was last measured

Include method of MT determination (e.g.:

visual)

If applicable, include the stimulation targets,

protocol, train duration, ITI, stimulation intensity,

and motor threshold as above

Dates and results of rating scales for current

course

- Subjective: Patient reported changes (or lack of)

in symptoms

Objective: Appearance and behavior

e.g.: resting passively, psychotherapy, reading,

watching videos, etc.

- If present, document symptom details, duration,
and intensity

- If absent, document lack of adverse effects

- If applicable

- Include any change in medications

Names of TMS technician and
supervising clinician

If applicable, document the presence of resident
(s)/trainee(s)

on many factors, and these statements serve primarily as suggestions for
good clinical practice based on the expert opinion and consensus of the
authors at the time of this writing.
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Name Titles & Credentials Institution Location of Self-reported
Workplace Stakeholder Group
Laura Cabrera, MA,  Dorothy Foehr Huck and J. Lloyd Huck Chair in Neuroethics Pennsylvania State Pennsylvania, USA Neuroethics
PhD Associate Director of Neuroethics and Engagement, Center for University Researcher

Susan Conroy, MD,
PhD

Mario Cristancho,
MD

David Feifel, MD,
PhD

Mustafa Husain,
MD

Sarah “Holly”
Lisanby, MD

Shawn McClintock,
PhD, MSCS

Brian Mickey, MD,
PhD

Neural Engineering

Senior Research Associate, Rock Ethics Institute

Chair, IEEE-BRAIN Neuroethics Subcommittee

Chair, IEEE P7700 Recommended Practice for Responsible
Design and Development of Neurotechnologies — Standard
Development Group

Board Member, International Neuroethics Society

Member, NNDC Neuromodulation Task Group

Member, International Brain Initiative Neuroethics Task Group
Assistant Professor of Psychiatry

Director, Neurostimulation Program

Associate Director, Mood Disorders Program

Co-Chair, NNDC Treatment-Resistant Depression Task Group
Member, NNDC Neuromodulation Task Group

Associate Professor of Clinical Psychiatry

Director, Transcranial Magnetic Stimulation and
Neuromodulation Program

Director, Electroconvulsive Therapy Service

Medical Director, Outpatient Psychiatry Services

Volume Editor

Author of consensus recommendations for other conditions/
treatments

Member, NNDC Neuromodulation Task Group

Professor Emeritus, University of California — San Diego
Founder, Kadima Neuropsychiatry Institute

Board Director, Clinical TMS Society

Scientific Advisory Board (voluntary), Brainsway LLC

Author of consensus recommendations for other conditions/
treatments

Member, NNDC Neuromodulation Task Group

Member, NNDC Ketamine, Psychedelics, and Treatment-
Resistant Depression Task Group

Past Co-Chair, Clinical TMS Society Clinical Standards
Committee

Professor of Psychiatry, Neurology, and Biomedical Engineering
Director, Neuromodulation Research and Therapeutics Program
Adjunct Professor of Psychiatry and Behavioral Sciences, Duke
University School of Medicine

Author of prior NNDC consensus recommendations document
Member, NNDC Neuromodulation Task Group

Member, American Psychiatric Association Task Force on ECT
Editorial Board Member, Journal of ECT

Editorial Board Member, American Journal of Geriatric
Psychiatry

Triage Editor, Frontiers in Psychiatry (Aging Section)

Past Chair, NNDC ECT Task Group

Director, Division of Translational Research, NIMH

Director, Noninvasive Neuromodulation Unit, NIMH
Professor Emeritus of Psychiatry and Behavioral Sciences, Duke
University School of Medicine

Author of prior NNDC consensus recommendations document
Author of consensus recommendations for other conditions/
treatments

Member, NNDC Neuromodulation Task Group

Member, American Psychiatric Association Task Force on ECT
Professor of Psychiatry

Co-Director, Interventional Psychiatry Research Program
Editorial Board Member, Journal of ECT

Associate Editor, Neuropsychology Review

Author of prior NNDC consensus recommendations document
Author of other consensus recommendations for TMS and ECT
Member, NNDC Neuromodulation Task Group

Teaching Faculty for TMS Fellowship, Duke University School of
Medicine

Professor of Psychiatry

Director, Noninvasive Neurostimulation Research Facility
Co-Director, Depression Center, Huntsman Mental Health
Institute

Journal Editor

Member, NNDC Neuromodulation Task Group
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Indiana University

University of Pennsylvania

University of California — San
Diego

Kadima Neuropsychiatry
Institute

University of Texas —
Southwestern
Duke University

National Institute of Mental
Health
Duke University

University of Texas
Southwestern Medical Center

University of Utah

Indiana, USA

Pennsylvania, USA

California, USA

Texas, USANorth
Carolina, USA

Maryland, USA
North Carolina, USA

Texas, USA

Utah, USA

TMS Clinician
TMS Researcher

TMS Clinician
TMS Researcher

TMS Clinical trialist
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TMS Clinical trialist
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TMS Clinical trialist
TMS Clinician
TMS Researcher
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TMS Clinical trialist
TMS Clinician
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Irving Reti, MD
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Daniela
Solzbacher, MD
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Director, Interventional Psychiatry Program

Member, NNDC Neuromodulation Task Group

National Institute of Mental
Health

University of Ilowa

Johns Hopkins University

University of California —
Davis

University of Utah

Brigham and Women’s
Hospital
Harvard Medical School

University of Michigan

University of Iowa

Michigan State University
Pine Rest Christian Mental
Health

Weill Cornell Medicine
(Cornell University)
NewYork-Presbyterian
Hospital

Maryland, USA

Iowa, USA

Maryland, USA

California, USA

Utah, USA

Massachusetts, USA

Michigan, USA

Iowa, USA

Michigan, USA

New York, USA

TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Researcher

TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

TMS Clinical trialist
TMS Clinician
TMS Researcher

Other Authors and Roles.

Name

Titles & Credentials

Institution

Location of
Workplace

Self-reported
Stakeholder Group

Tracy Barbour, MD

Instructor in Psychiatry

Massachusetts General Hospital

Massachusetts, USA

TMS Clinician

Medical Director, Transcranial Magnetic Harvard Medical School TMS Researcher
Stimulation Service
Member and Co-Chair, Clinical Standards

Committee, Clinical TMS Society

(continued on next page)

226



N.T. Trapp et al. Clinical Neurophysiology 170 (2025) 206-233

(continued)
Name Titles & Credentials Institution Location of Self-reported
Workplace Stakeholder Group
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Daniel M. Director and Chair, Temerty Centre for Centre for Addiction and Mental Toronto, ON, TMS Clinical trialist
Blumberger, MD Therapeutic Brain Intervention Health Canada TMS Clinician
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Appendix 2. Search terms for primary data capture

TMS Search Terms:

“Transcranial Magnetic Stimulation”[mesh] including: “transcranial magnetic stimulation*”, “TMS”, “rTMS”, “iTBS”, “cTBS”, “TBS”, “theta burst”.

Depression Search Terms:

“Depression”[mesh], “Depression, Postpartum”[mesh], “Depressive Disorder, Major”’[mesh], “Depressive Disorder, Treatment-Resistant”[mesh],
“Dysthymic Disorder”[mesh], “Premenstrual Dysphoric Disorder”’[mesh], “Vascular Depression”[mesh] including: “MDD”, “depressive disorder*”,

(LI

“disorder, depressive”, “neurosis, depressive”, “depressive neuros*”, “neuroses, depressive”, “depression, endogenous”, “depressions, endogenous”,

5
“endogenous depression*”, “depressive syndrome*”, “syndrome, depressive”, “syndromes, depressive”, “depression, neurotic”, “neurotic depression”,
“neurotic depressions”, “melancholia*”, “unipolar depression”, “depression, unipolar”, “depressions, unipolar”, “unipolar depressions”, “bipolar
depression”, “manic depression”, “bipolar disorder”, “postpartum depression”, “depression, postpartum”, “dysthymic disorder”, “premenstrual
dysphoric disorder”, “vascular depression”, “difficult-to-treat depression”, “geriatric depression”, “psychotic depression”, “depression with psychotic

bl
features”, “melancholic depression”.

Appendix 3. Search terms for sub-section abstract review (when applicable). Some categories were reviewed more broadly based on
input from the topic leader or task group

Efficacy section: “efficacy”, “effectiveness”.

Safety section: “safety”.

Predictors section: “duration”, “demographic”, “predictor”, “medication”, “comorbid”, “personality”, “electroconvulsive”.
Special Populations section: “partum”, “pregnancy”, “geriatric”, “elderly”, “older”.

3
Coil Design section: “coil”, “coil design”.
Targeting section: “target”, “targeting”, “localization”.
Stimulation Protocols section: “priming”, “accelerated”, “rapid”, “synchronized”.
Treatment Optimization section: “bilateral”.

Barriers section: “barriers”.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.clinph.2024.12.015.
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